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ABSTRACT
The rise of serverless introduced a new class of scalable, elastic
and highly available parallel workers in the cloud. Many systems
and applications benefit from offloading computations and parallel
tasks to dynamically allocated resources. However, the developers
of C++ applications found it difficult to integrate functions due
to complex deployment, lack of compatibility between client and
cloud environments, and loosely typed input and output data. To
enable single-source and efficient serverless acceleration in C++,
we introduce Cppless, an end-to-end framework for implementing
remote functions which handles the creation, deployment, and in-
vocation of serverless functions. Cppless is built on top of LLVM
and requires only two compiler extensions to automatically extract
C++ function objects and deploy them to the cloud. We demon-
strate that offloading parallel computations from a C++ application
to serverless workers can provide up to 30x speedup, requiring
only minor code modifications and costing less than one cent per
computation.

1 INTRODUCTION
Serverless functions have taken cloud systems by storm. State-
less, short-lived, and isolated functions execute on dynamically
allocated cloud resources, and the programming model of Function-
as-a-Service (FaaS) hides the software and hardware stacks of the
cloud from the user. Functions offer a highly scalable and elastic of-
floading of computations to dynamically allocated parallel workers,
with up to 3000 new invocations in a minute on commercial cloud
platforms [1]. Thus, even though serverless has initially gained
popularity in web development and API integration, functions have
been recently used for parallel and compute-intensive tasks such
as data analytics, machine learning training, compilation, and high-
performance computing [3, 4, 10, 13, 17, 22–24].

In the pay-as-you-go system of FaaS, users are charged for each
millisecond of active computation in a function. Optimizing an
application deployed to virtual machines improves the responsive-
ness and throughput of service. Still, these improvements might not
immediately lead to decreased costs when rescaling the deployment
is not feasible. In serverless, each optimization provides immediate
benefits as every millisecond saved decreases the cost of running
an application in the cloud, and increases the workload size where
serverless is more efficient than a persistent deployment [7, 9].
Thus, it is important that such services are implemented on effi-
cient backends and enjoy the performance advantages of fast and
compiled languages.
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Figure 1: CPU-Raytracer used on rendering a 500x500 im-
age (Sec. 5.3). Parallelization with Cppless provides speedups
unattainable on a local machine, with minor code modifica-
tions.

However, even though serverless has been shifting to larger and
more compute-intensive workloads, it is still dominated by lan-
guages popular in web services, such as Node.js and Python [2].
Achieving high performance in these high-level and dynamic lan-
guages is difficult, and requires programmers to use native exten-
sions. Furthermore, many parallel and high-performance libraries
and frameworks are already implemented in C/C++ and could be
used for parallel computations in the cloud.

The low adoption of C++ in serverless can be explained by the
complex deployment model, where functions are split from the
main application and compiled separately, deployed to the cloud
using interfaces that are not standardized and differ for each cloud
platform, and executed through a vendor-specific API (Sec. 2.1).
While managed languages can use the bytecode and runtime in-
trospection mechanisms to automatically extract function code
from an application (Sec. 2.2), existing C++ language capabilities
are not sufficient for such a task. This problem is aggravated by
the lack of compatibility between client and cloud software and
hardware environments, and the conversion of statically typed data
structures into and from loosely typed JSON format (Sec. 2.3). This
results in an unnecessarily convoluted process and a high entry
barrier for serverless functions in high-performance applications.
To benefit from serverless acceleration, parallel C++ applications
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need a framework that keeps the application and function code
together to achieve high productivity, while avoiding code bloat
and cloud vendor lock-in.

We resolve the aforementioned limitations by introducing Cpp-
less, a single-source programming model and an end-to-end com-
piler for serverless functions in C++.Cppless accelerates parallel C++
applications by shifting compute-intensive tasks to serverless func-
tions, which are automatically created, deployed, and invoked by
the framework. In the example of a Ray-Tracer application (Fig. 1),
using serverless with Cppless requires only 13 lines of code more
than for an implementation with local threads and provides 33.9x
speedup against serial computation. Each serverless processing
costs less than 0.003$ and is delivered in less than two seconds,
while a virtual machine could take several minutes to boot, and
keeping online even a small virtual machine with two virtual CPUs
costs 0.048$ per hour.

Cppless achieves these performance, cost, and productivity re-
sults by combining the serverless and non-serverless program parts
in a single source code. The compiler detects serverless function
code and creates alternative entry points to allow for a sepa-
rate compilation path for select functions (Sec. 3). Input data is
packed into a binary format with the help of a serialization library,
and the framework encapsulates the vendor-specific process of
deploying and invoking functions. The compiler is built on top of
the LLVM framework and requires only a few modifications to the
clang codebase (Sec. 4). The new language extensions added to sup-
port single-source programming are hidden from the user behind
a high-level library interface. Thus, with just a few lines of code
added to the application, users can offload native C++ computa-
tions to elastic and scalable serverless functions while retaining the
same compilation workflow. With a set of microbenchmarks and
parallel applications in C++ (Sec. 5), we demonstrate that Cppless
enables efficient offloading parallel computations to the serverless
cloud without compromising the productivity and safety of C++
programming.

In this paper, we make the following contributions:
• Serverless programming model for efficient offloading par-

allel computations in C++ to the cloud.
• A C++ toolchain that allows users for straightforward em-

bedding of serverless functions into their applications.
• A C++ standard compliant framework providing high-level

abstractions that hide the complexity of cloud provider
APIs.

2 BACKGROUND
Serverless functions provide high scalability but introduce a divi-
sion between functions shipped to the cloud and the main applica-
tion code (Sec. 2.1). While several frameworks have been developed
to integrate functions and applications using them, they targeted
high-level and dynamic languages (Sec. 2.2). The unique challenges
of the statically typed and compiled C++ require a different ap-
proach (Sec. 2.3).

2.1 Serverless Functions
Serverless functions are expanded and shrank automatically by the
cloud provider, according to the number of invocations arriving at
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Figure 2: Development workflow in serverless: functions are
shipped to the cloud during the build time.

the REST API of a FaaS system (Fig. 2) [9, 18]. New instances of
functions are deployed in isolated sandboxes such as containers
and micro virtual machines, and the user is not concerned with
adjusting the scale of an application. All function invocations must
arrive at the REST API of the serverless cloud, and input data must
be serialized and sent in the loosely typed JSON format.

Such scaling is only possible if users define their functions earlier,
and provide the cloud operator with code in a compatible format.
The standard deployment method is a compressed code package
with the function code, which requires locating its dependencies
and gives users very little control over the runtime environment.
An alternative technique ships to the cloud entire Docker images,
leaving users with more freedom to control the software stack of a
function [6]. In practice, cloud operators distribute the container
images used for workers handling packaged code, as the choice of
the image impacts the build of native libraries. While the process
of deploying functions is quite straightforward for languages with
ubiquitous package managers and managed runtimes, it is more
complex for applications that compile to native code and require
building many dependencies.

2.2 Related Work
Lithops [27] is a multi-cloud framework for offloading Python func-
tions to serverless functions. It implements a replacement of the
standard multiprocessing library which provides the same inter-
face, but instead of spawning a new process, a function is invoked.
Instead of deploying function code ahead of time, Lithops analyzes
the function code at runtime to detect all dependent modules, se-
rializes them, and sends it to the cloud storage. The code is later
fetched and executed by a generic serverless Pythonworker. Crucial
implements stateful serverless applications in Java [5]. Function
invocations are abstracted as threads that execute the Runnable in-
terface, similarly to the standard interface for built-in Java Threads.
Similarly to Lithops, a generic serverless function is used, which
receives a marshalled Java object with code attached and parame-
ters attached. Crucial comes with a distributed shared object layer
to manage state and return data from the offloaded task. Thus, it
cannot be deployed to vanilla serverless platforms.
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Kappa [32] targets long-running serverless applications and im-
plements automatic checkpointing for Python functions. A dedi-
cated compiler transforms user code by inserting continuations,
but its support is limited to native Python code and it does not
handle Python C extensions. Containerless [16] compiles a subset
of JavaScript into Rust, providing speculative and opportunistic
acceleration of functions implemented in high-level languages. In
the field of GPU programming, single-source programming models
have been developed to compile C++ code into GPUs [15, 19, 25, 31].
These require using dedicated compilers, which simplified the code
generation with techniques such as annotating functions compiled
to device code, using dedicated data accessors, and explicit kernel
naming [8].

2.3 Why Cppless?
Cppless attempts to achieve in C++ the same goal as Lithops and
Crucial did for Python and Java, respectively; namely, to provide a
standard-compliant interface for single-source serverless program-
ming. However, it needs new techniques and approaches due to
the lack of platform-independent byte code that can be inspected
and serialized at runtime. Integrating serverless functions into C++
applications is unnecessarily difficult because of three major differ-
ences and challenges that are resolved in the Cppless framework.

Challenge #1: Compile-Time Dispatch Interpreted languages such
as Python and Bash allow to extract function code and send it with
the input data, allowing for dynamic function dispatch at runtime.
On the other hand, C++ requires that the function code is compiled
ahead of time, and it lacks runtime introspection and reflection
mechanisms that could reliably and efficiently discover all depen-
dencies of a selected function. Shipping all linked libraries would
quickly lead to transmitting dozens and hundreds of megabytes,
creating major performance overheads. Instead, the program must
be restructured to allow for separate compilation of the serverless
functions, extended with serialization and invocation interface, and
the compilation artifacts must be uploaded to the cloud before the
compilation is finished.

Challenge #2: Server Environment Serverless functions still exe-
cute on a server, which can be easily hidden in the high-level and
interpreted languages with their own runtime. However, this is
not the case for compiled languages such as C++, where both the
underlying architecture and ABI compatibility are of concern. For
example, the user code might be running on an ARM notebook
and link against the libc++ and libc standard libraries, while the
function code will execute in a Linux sandbox on an x86 server,
with libstdc++ and musl available as implementations of the C++
and C standard libraries, respectively. Thus, it is not sufficient to
decompose the function code into a separate shared library but still
compile the entire application in a single environment with the
same configuration. Statically typed and compiled languages such
as C++ require a new programming model that will handle function
code as a separate entity, while hiding this complexity from the
user and presenting a uniform interface.

Challenge #3: Static Typing Cloud platforms accept function input
through a RESTful interface, in a JSON format, which requires a
dedicated conversion from strongly typed C++ data structures. A
regular function or an OpenMP task benefit from the compile-time
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Figure 3: Cppless exports selected functions as remote server-
less functions, and deploys them to the cloud.

verification of type conversion and compatibility. On the other
type, separated implementations of the invoking application and
serverless function are joined only by an intermediate proxy in
the form of a loosely typed JSON, which prevents the compiler
from analyzing type compatibility. Incorrect data serialization and
typing are caught only when it corrupts the execution of a function
unless users manually write a JSON schema or add convoluted
error-handling code.

3 COMPILER FOR SERVERLESS
Cppless implements a separation of user C++ code into the host
process and serverless functions, which are deployed to the cloud
and invoked remotely (Fig. 3). The design comprises three main
parts: a set of language extensions implemented at the compiler
level, a user library that encapsulates language extensions to expose
a single-source programming model to users, and runtime tools
responsible for deploying and invoking cloud functions.

3.1 Alternative Entry Points
Cppless exports code of serverless functions to a separate compila-
tion path by defining alternative entry points. Many programming
languages define the concept of an entry point, which is a function
executed when the program is initially started. From the entry point,
the control flow can diverge and is governed by the programming
language’s semantics. In languages from the C-family, this func-
tion is usually called main, which is automatically called when the
program initially starts1. We extend this concept with alternative
entry points by allowing multiple entry points to co-exist in a single
program. Each new entry point can be seen as a separate program,
as the alternative entry functions are compiled into separate ex-
ecutables or libraries. Entry points allow programmers to define
multiple separate and distinct programs in the same source file,
while transparently forming borders between them with functions
that define the start of execution flow for each entry point.

Alternative entry points are combined with template metapro-
gramming techniques to implement some of the new additions in a
library, rather than modify the compiler.

3.2 Serverless Function Definition
In Cppless, serverless functions are defined as function objects,
including lambda functions which define their own type as well.

1Usually through a _start function which is the actual entry point
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template <class Func> struct ProcessBridge {
void operator()() {
// Spawn process executing the alternative
// entry point.
auto alt_entry_name = gen_id<Func>();
spawn(alt_entry_name);

}
__attribute((entry)) int main(int, char**) {
Func func;
func();

}
};

Figure 4: ProcessBridge connects a user-defined function
object with an invocation of a remote serverless function.
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Figure 5: Compilation code flow of a project with an alterna-
tive entry point

The limitation of a pure library approach is that the alternative entry
point only gains access to the type of the function object, as the
value it is not known at the compile time. The value of the function
object, which contains the actual code, thus has to be transferred to
the entry point at the runtime through serialization, which prevents
deployment ahead of time. To that end, Cppless employs a compiler
extension that allows for generic serialization of lambda functions,
which allows end users to implement serverless functions this way,
as long as all variables captured in the function are serializable.

Functions objects are used in composition with entry points
to implement bridge classes, which use template programming to
provide an interface to an alternative entry point that they define
(Listing 4). This process can be used to model and deploy serverless
functions: The client-side representation of a serverless function
is an instance of the bridge class, the instantiation of this bridge
class also automatically registers an alternative entry point that the
runtime can use to create an invocation. To differentiate between
many deployed serverless functions, the compiler must create a
connection between the function object code and the remote entry
point. To solve this problem, we implement unique identification
of all types and use these compile-time values to name alternative
entry points.

3.3 Compilation Pipeline
Using proposed language extensions, we can split the user code into
separate programs that can be deployed to the cloud. First, each
serializable function object is wrapped with a bridge class to define

an alternative entry point. Free functions, which are not bound to
a particular function object, can be serialized by wrapping them
with lambda functions. The serialization of input and output of the
function is implemented in a runtime library, including support
for serialization of many types from the C++ Standard Template
Library, such as std::string and std::vector. The user only has
to manually add serialization for custom types, which is necessary
as C++ objects cannot be serialized in a unique, cross-platform way.

Since the bridge class templates are instantiated lazily, the al-
ternative entry points are only generated for serializable function
objects if they are indirectly instantiated from non-templated con-
texts. The bridge class entry point is also responsible for interacting
with the cloud provider environment, e.g., reading the arguments
using the provided function API and writing function results. When
using alternative entry points, Cppless produces an additional ex-
ecutable for each serverless function (Figure 5). We implement a
custom deployment tool in addition to the C++ compiler, which is re-
sponsible for deploying the compiled function code using metadata
stored in a compiler-emitted manifest file. Once the user application
attempts to invoke a serverless function, the Cppless library will
call the serialization methods for each input argument and identify
the external cloud function through the type name. In the function
code, the bridge class code is responsible for deserializing the input
arguments and calling the original function object. The return value
is serialized and deserialized in the same fashion.

The compilation workflow can be extended to support cross-
compilation. To that end, two separate compilation passes are con-
figured: one host compilation pass which ignores alternative entry
points, and one focused on the main entry points for the serverless
function.

Compilation Pipeline. We propose a compilation flow consisting
of (1) integration with the CMake build system, (2) a deployment
tool that uploads alternative entry point executables to the cloud
as serverless functions.

CMake Build Integration. We implement CMake extensions that
define specific build targets with support for compilation with Cp-
pless. The target adds a second compilation pass, adjusts compiler
flags, creates a sysroot, and invokes cloud deployment tools. Server-
less functions are redeployed only if a code change is detected.

Cloud Deployment Script. The deployment script encapsulated
the complexity of managing cloud resources and vendor-specific
interfaces. For each alternative entry point, a new serverless func-
tion is created, configured, and deployed with the compiled code.
Function names are provided through the unique type identifiers
generated by the compiler.

4 IMPLEMENTATION
Cppless implements a high-level interface for dispatching server-

less invocations in C++ applications (Sec. 4.2). Internally, the library
depends on a set of language extensions that are implemented di-
rectly in the LLVM [21] (Sec. 4.2), including reflection suport for
C++ lambda functions (Sec. 4.3). Finally, we discuss the limitations
of the current Cppless implementation and proposed solutions to
overcome them 4.4.
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1 double pi_estimate(int n);
2

3 double compute_pi()
4 {
5 const int n = 100000000;
6 const int np = 128;
7

8 cppless::aws_dispatcher dispatcher;
9 auto aws = dispatcher.create_instance();
10

11 using config = lambda::config<
12 cppless::lambda::with_memory<512>,
13 cppless::lambda::with_ephemeral_storage<64>
14 >;
15

16 std::vector<double> r(np);
17 auto fn = [=] { return pi_estimate(n / np); };
18 for (auto& result : r)
19 cppless::dispatch<config>(aws, fn, result);
20 cppless::wait(aws, np);
21

22 auto pi_sum = std::reduce(r.begin(), r.end());
23 return pi_sum / np;
24 }

Figure 6: Offloading parallel PI computation to AWS Lambda
with Cppless.

1 add_executable(parallel_pi parallel_pi.cpp)
2 target_link_libraries(
3 parallel_pi
4 PRIVATE cppless::cppless
5 )
6 aws_lambda_target(parallel_pi)
7 aws_lambda_serverless_target(parallel_pi)

Figure 7: Integrating Cppless into the build system requires
minor adjustments to serverless build targets.

4.1 User Library
The Cppless runtime library hides both new language extensions
and all vendor-specific cloud interfaces. We use the classic exam-
ple of parallelizing PI estimation (Listing 6) to demonstrate how
users can implement serverless functions with Cppless, while not
making their code dependent on additional third-party SDKs and
keeping the function code united with the main application. In
order to execute the computation serverless, the user creates an
instance of a dispatcher configured for the selected cloud system
(9). Each instance of that dispatcher acts as a namespace for invoca-
tions. To invoke the function concurrently across 128 instances of
an AWS Lambda function, the user calls the cppless::dispatch
function (19), which will order the Cppless compiler to turn the
user C++ lambda function (17) into an AWS Lambda function in
the cloud. Users can optionally configure resources assigned to the
cloud function, such as memory and temporary storage (11-14). The
configuration will be converted to metadata by the compiler and at-
tached to the generated function code. Then, cppless::waitwaits
for all invocations to finish (20). The Cppless runtime deserializes

the results and can be read directly by the user and merged (22).
At the runtime, the call to cppless::dispatch triggers a function
invocation. The values of n and np captured in the C++ lambda
function are serialized (17), and Cppless uses internally the C++
library cereal [14] for that task. The dispatcher selects the AWS
Lambda function to be invoked through the unique type identifica-
tion generated by the Cppless compiler. The third parameter of this
function specifies where the result should be stored.

CMake Integration. To generate and deploy serverless functions,
users add Cppless to their project build system (Listing 7). The
deployment script is integrated into the build system using a set
of CMake functions. The application has to be built effectively
twice: once for the host architecture and once for the architecture
of remote functions. The compiler flags and configuration values
used in these two targets might not be the same, requiring using
different CMake configurations. Internally, separate build configu-
rations are managed by using the ExternalProject functionality
of CMake. These details are hidden from the user by exposing a
CMake function aws_lambda_serverless_target. The function
creates an additional cross-compiled target that is deployed as a
serverless function to the cloud at compilation time.

Dispatcher. The interface demonstrated above is a fork-join style
API based on a low-level dispatcher interface, which is based on
sending tasks in the form of serializable and identifiable function
objects. Dispatchers encapsulated an interface of a single cloud
provider, allowing to easily switch between different systems with-
out requiring users to rewrite their applications. Dispatchers in-
teract with the compilation pipeline through the metadata system.
This allows to correctly identify functions and define configuration
options on a per-function level directly in the C++ application.

Internally, we implement two methods of generating HTTP re-
quests to trigger serverless functions in AWS, an HTTP/2-based
implementation with nghttp2 [30], and an HTTP/1.1-based imple-
mentation that uses the Boost.Beast library [12]. Both solutions
have different trade-offs: while HTTP/2 is faster and more effi-
cient when many different requests are to be sent at the same time,
Boost-based solution is more flexible and portable. The nghttp2-
based dispatcher uses round-robin scheduling to assign requests
to a pool of connections to the AWS Lambda API, which allows us
to support many concurrent requests. Furthermore, using a pool
of connections decreases the probability of head-of-line blocking
problems. On the other hand, the Boost-based implementation is-
sues a TCP-backed HTTP request for each invocation, which means
that the number of concurrent requests is limited by the space of
file descriptors available to the user process.

Alternative Entry Points. Alternative entry points are the most
crucial part in the Cppless compilation flow: they enable a single
compilation unit to expose multiple entry points, letting us to gener-
ate code for many serverless functions from a single C++ translation
unit. From a user perspective, alternative entry points are an an-
notation added to a function declaration. Adding this annotation
affects the compilation process by creating a separate executable
or library where the the main function is replaced with the body of
the alternative entry point function. However, users are expected
to neither use the alternative entry points directly nor be aware
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of their existence, as this compiler feature is hidden behind the
cppless interface.

4.2 Serverless Compiler in LLVM
The changes to the Clang compiler are limited to 800 lines of code
added and less than 200 modified.

Frontend. The compiler frontend is altered to parse and validate
the new annotation for alternative entry points and metadata. As
alternative entry points must not be directly called, issues arise
where they are not emitted into the LLVM module, especially with
top-level declarations. We ensure that methods annotated as al-
ternative entry points are treated as if they are used to prevent
dead-code optimizations, ad we force the template instantiation
when the entry point is present. Clang’s used annotation has a sim-
ilar effect. In templated contexts, this change ensures the function
is emitted once the parent context is fully instantiated. Additionally,
alternative entry points are type-checked similarly to main function
definitions, leveraging existing semantic analysis.

Code Generation. The LLVM code generation process is modified
to support alternative entry points and output function names
to the subsequent compilation steps. Furthermore, the expression
associated with the metadata attribute of alternative entry points
can be evaluated as a constant expression. The result is converted to
a std::string available to the compiler program, and the binary
string is attached to the corresponding LLVM function.

LLVM Backend. During the backend code generation, we propa-
gate information about alternative entry points through the pipeline.
The corresponding LLVM function is annotated as an alternative
entry point to ensure a separate treatment in the backend. Once the
CodeGen module generates the main LLVM module, it is cloned
and renamed for each entry point. We then generate code for all
modules, creating separate object files for each alternative entry
and the original binary for the host application. At this point, we
also output the manifest file which stores configuration data of all
entry points, including the user-supplied metadata, such as function
resource configuration.

Linking. The main Clang driver handles all linker invocations
for specified object files and targets. Build tools often utilize this
driver due to its uniform interface, which motivates building a
modified linker driver that exposes the same interface and can be
used by build systems. We introduce a new tool cppless-ld, a
cross-platform linker that can handle multiple output files when
alternative entry points are present. cppless-ld accepts the same
command line interface as Clang, using the same Clang toolchains
to support linking for different platforms. Our linker reads manifest
files from the compilation which describes alternative entry points,
and uses the original Clang driver to link them. The linker produces
one regular output file and additional configuration files for each
alternative entry point, while merging the manifest files into the
output.

4.3 Lambda Functions
We implemented in Cppless two new language features to support
dispatching C++ lambda functions (Listing 8). First, to support the

1 template<typename Func>
2 void dispatch_function(Func && lambda)
3 {
4 constexpr int capture_count =
5 decltype(lambda)::capture_count();
6 auto first_capture =
7 serialize(lambda.capture<0>());
8

9 auto func_id =
10 __builtin_unique_stable_name(
11 decltype(lambda)
12 );
13

14 invoke(func_id, first_capture);
15 }

Figure 8: Pseudocode of serverless invocation demonstrating
the new lambda reflection and identification features.

serialization of function arguments, we implemented a compile-
time, constexpr-compatible reflection mechanism for lambda func-
tions. The reflection exposes direct accessors to the hidden unnamed
capture members. The template member function capture returns
an l-value reference that can be used both to read and to write
the individual unnamed capture members, including passing the
captured value to serialization.

Then, we created a unique identification system to connect entry
points with the invoked function. We implemented an internal func-
tion that takes a type as an argument, and returns a literal string
used to identify the type that was added. This function is backed by
the Clang implementation of builtin-sycl-unique-stable-name,
a feature added for to support the SYCL framework [19], which has
a similar use-case. The function generates a mangled type name
but uses a slightly modified Itanium mangling scheme. The main
change we implemented was removing inlined namespaces from
the mangling prefix. This increases compatibility between differ-
ent standard library implementations (Sec. 2.3) and improves the
stability of these identifiers.

4.4 Limitations
Serializable Function Objects. Requiring that tasks are serializable

functions permits using some constant function pointers, i.e., a
pointer where the exact name of the function that will be called is
known at the compile-time. Supplying function pointers does not fit
the user-space design where the type of function objects is used as a
basis for creating serverless functions. Instead, a potential solution
would be to add an implicit conversion from constant function
pointers to captureless lambda function objects. This would allow
the user-space design to treat function pointers as regular lambdas
if possible.

Dependencies. The linker used in Cppless treats all alternative
entry points in the same way, which requires using the same set of
linking dependencies for each function. However, the alternative
entry points can be unbloated after linking is completed by exam-
ining which symbols of a library are used, reducing the size of the
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Time [ms] Throughput
[GiB/s]

binary
Encode 5.90 1.32
Decode 3.18 2.46

binary_json
Encode 13.03 0.60
Decode 28.63 0.27

structured_json
Encode 462.40 0.02
Decode 144.15 0.05

Figure 9: Benchmarking serialization of an array of unsigned
integers.

Time [ms] Throughput
[GiB/s]

binary
Encode 97.35 0.3061
Decode 81.48 0.3658

binary_json
Encode 131.62 0.60
Decode 158.62 0.041

structured_json
Encode 726.51 0.041
Decode 650.27 0.0458

Figure 10: Benchmarking serialization of an array of struc-
tures.

executable. An alternative would be an integration into the cpp-
less metadata system which could enable control over the linkage
process through compile-time directives.

Compilation Time. As multiple LLVM modules are produced and
then lowered to the target language independently, the compilation
time increases linearly with the number of alternative entry points.
This limitation could be fixed by integrating the cloning process
deeper with LLVM. Currently, we limited ourselves to using the
public LLVM APIs to improve the maintainability of Cppless, which
do not support such integration.

5 EVALUATION
We demonstrate the ease of programming and parallel offloading
in Cppless with micro-benchmarks, application from the Barcelona
OpenMP Task Suite (BOTS) [11], and a CPU RayTracing appli-
cation [28]. Benchmarks were executed on a t3.medium virtual
machine instance in the AWS eu-central-1 region, with 4 GiB RAM,
2 vCPUs, and a 5 Gb/s network connection. AWS Lambda functions
are configured by default with a memory limit of 1 GiB, except for
the N-Queens benchmark, where we use Lambda instances with 2
GiB of memory. We compile all benchmarks with the O3 optimiza-
tion level, and measure only the runtime of applications, excluding
the compilation and cloud deployment times, excluding the first
three warmup iterations.

5.1 Microbenchmarks
We use microbenchmarks to analyze the performance of two critical
parts of Cppless runtime: serialization and the AWS Lambda client
that the dispatcher uses to invoke tasks. The choice of serialization
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Figure 11: The latency of concurrent invocations of warm
AWS Lambda functions with the HTTP dispatch, as observed
by the client.

format directly impacts the performance of serverless offloading.
On the other hand, the function dispatch must scale up to thousands
of invocations to allow for massively parallel processing.

Serialization. Serverless systems put constraints on the type
of data that can be transmitted to a function. For example, AWS
Lambda requires that function input and output are valid JSON
objects. We evaluate two JSON-based scenarios of serializing C++
objects with the cereal library: one using direct JSON serialization,
and the other one using binary serialization and base64 encoding
of the resulting data to create a valid JSON object. We compare
both scenarios against the plain binary serialization.

First, we benchmark the serialization of an array of 1000000
64-bit unsigned integers (Table 9). The overhead of the binary_json
format can be attributed to the additional base64 encoding that has
to be executed. On the other hand, the JSON archive performs much
worse due to number parsing and additional memory allocations.
Then, we evaluate the serialization of a structure consisting of two
integers and a single string, with a custom serialization method
(Table 10). This serialization is more expensive due to pointer jump-
ing and more complex encoding of a std::string. Nevertheless,
our custom binary_json format is up to 5.52x faster than a vanilla
JSON serialization.

AWS Lambda Client. We examined the latency of parallel invo-
cations with the custom AWS Lambda client used in Cppless. The
client uses Boost ASIO abstractions to dispatch dozens of parallel
invocations without allocating a separate thread for each task. In
our test setup, 16 HTTP/2 connections are employed, each one
handling up to 100 concurrent requests. For the purpose of this
benchmark, the client invokes an AWS Lambda function imple-
mented in Node.js, hosted on an account with a maximal function
concurrency of 1000.
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Figure 12: N-Queens benchmark for 𝑁 = 17. Serverless results
are obtained with prefix values of 1 and 2.

As shown in Fig. 11, the latency for a single invocation is equal
to around 50 ms, increasing linearly to approximately 150 ms un-
til the client resources are exhausted. At this point, invocations
are not dispatched directly anymore but have to wait until the re-
sponse of pending invocations arrives. The client latency includes
a constant initial latency for connecting to the AWS API, and af-
terward, HTTP/2 requests reuse the underlying TCP connection
and can pipeline multiple requests at once. After the connection
initialization, the client dispatches invocations at a rate of around
ten invocations per millisecond, as long as either the AWS Lambda
concurrency limit or dispatcher resources are not exhausted. This
allows using thousands of parallel invocations for small tasks, even
in cases where the offloaded tasks take a few dozen of milliseconds
to complete.
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Figure 13: N-Queens benchmark for 𝑁 = 18. Serverless results
are obtained with prefix values of 2 and 3.

5.2 N-Queens
The N-Queens problem is defined as finding a placement ofN queen
figures, on a chessboard of size NxN, such that no two queens
threaten each other. The problem is known to be NP-hard and
has numerous solutions dependent on the size of the board N. A
commonly employed solution is backtracking, where queens are
placed row by row incrementally, and the algorithm backtracks
when placement becomes impossible.

While typical board representation involves arrays, this is inef-
ficient as placing a queen requires a search over the entire array.
Thus, we replace the array-based implementation from the BOTS
benchmark suite with one that uses bit patterns to represent board
states [26], improving the performance of determining queen place-
ment. To parallelize finding the solution, we use prefix tasks of
length 𝑝 where the location of the first 𝑝 queens is fixed, allow-
ing us to break down the primary problem [20]. The length of the
prefix determines the number of tasks that are generated and can
be offloaded, with a longer prefix creating more subtasks and in-
creasing the available parallelism. The created tasks are offloaded
to serverless workers, and results are accumulated to create the
final solution.

We compare the local serial and parallel computation with the
dispatch to serverless. The local parallel implementation requires
25 lines of code, while a solution with the serverless Cppless dis-
patcher is implemented with 36 lines of code. Performance results
for the N-Queens problem with 𝑁 equal to 17 and 18 are pre-
sented in Figures 12 and 13, respectively. Offloading computations
to serverless functions provides speedups of up to 164x and 894x
for 𝑁 = 17, 𝑝 = 2 and 𝑁 = 18, 𝑝 = 3, respectively. When compared
to the number of generated parallel tasks, which is equal to 240
for the first scenario and 3420 for the second one, these results
indicate that serverless offloading does not achieve linear scaling.
This result is explained by the variance in the workload assigned to
different tasks, with the total execution time limited by the longest-
running task and the overhead of assembling results on the host
machine. The heterogeneous task workload highlights the benefits
of computing with serverless functions: the pay-as-you-go pricing
model ensures costs are proportional to the actual work done by
all tasks, eliminating the need to consolidate smaller tasks. Thus,
waiting for the longest-running task to finish does not incur any
additional cost as all other parallel workers are not generating any
charges.

5.3 Raytracer
As a second application, we consider aMonte-Carlo implementation
of ray tracing [28]. The implementation incorporates a bounding
volume hierarchy mechanism [29], and it has been implemented to
use the AVX2 vector instructions. The benchmark scenario renders
a random scene, which is divided into smaller tiles to create parallel
tasks. As for the previous benchmark, we compare the performance
of local serial and parallel computation on a small virtual machine
against offloading these tasks to serverless functions. In this ex-
ample, using serverless workers requires adding 13 more lines of
code.

Performance. We evaluate the benchmark on an image of size
500x500 and show that serverless computing with Cppless provides
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Figure 14: The total cost of parallel computations in the Ray-
Tracer benchmark, expressed in the gigabyte-seconds metric
of AWS Lambda, i.e., a total computation time of all functions
multiplied by the function memory size.

a speedup of up to 34x (Fig 1, p.1). This result is already attractive
for the end user, as their compute-intensive task taking over 40
seconds can now be completed in less than two seconds, without
having to allocate a dedicated and more powerful virtual machine
with multiple cores.

However, the obtained speedup is lower than the number of
parallel workers, which is equal to 256 (tile 32x32) and 1024 (tile
16x16), and the culprit of lower scalability is unequal work distribu-
tion. By analyzing the latency distribution of serverless invocations,
we found out that the overall latency is dominated by a few long-
running functions. While the median task latency scales almost
perfectly with the tile size, the maximum workload only diminishes
by approximately 40% when the tile size is halved. This uneven
workload distribution is due to varying per-pixel workloads. The
computation time of each task varies and depends on the objects
present in the assigned tile.

Furthermore, we analyzed the time required to spawn the invo-
cations on the client side to verify that the serialization overhead
and accumulation of results are not the scalability bottleneck. The
complicated and structured scene graph creates approximately 88
KiB of data for each invocation, and the serialization takes around
40% of the invocation overhead latency. Nevertheless, Cppless run-
time can spawn more than 2000 such tasks per second, indicating
that our runtime can support massively parallel computations, even
when operating from a virtual machine with constrained resources.

Cost. To estimate the overheads that larger scales of parallelism
with serverless, we executed the same workload with a varying
number of parallel tasks offloaded to functions. Then, we queried
the billing data provided by the cloud operator AWS to summarize
the total computation cost. The cost metric expresses the total com-
putation time across all tasks. As shown in Fig. 14, the cost of the
computation is barely affected by the parallelism scale. Although
the result is available more quickly, the cost stays almost constant,
emphasizing the benefit of the pay-as-you-go billing model. Specif-
ically, for this benchmark, the task duration for the smallest tile
size varies between 8 and 150 milliseconds. Even with invocations
in the single-digit millisecond range, the cost of the computation is

dominated by the productive work, as a cost increase with a larger
number of functions would indicate inefficiencies introduced by
Cppless workers.

6 CONCLUSIONS
We present Cppless, an innovative approach to define serverless
functions within C++ applications. Despite the inherent constraints
of C++, Cppless offers a streamlined way for programmers to trans-
parently offload tasks to serverless platforms. Cppless defines com-
piler extensions and employs meta-programming techniques to
transition to compile time the work typically done at the runtime,
helping to diminish the serialization overheads and minimizing the
required changes to the core language. With a selection of parallel
application benchmarks, we demonstrate that serverless invoca-
tions can be effortlessly integrated with Cppless, achieving high
scaling with negligible overhead.
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