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Abstract
Modern high-performance networks offer remote direct 
memory access (RDMA) that exposes a process’ virtual 
address space to other processes in the network. The 
Message Passing Interface (MPI) specification has recently 
been extended with a programming interface called MPI-3 
Remote Memory Access (MPI-3 RMA) for efficiently exploit-
ing state-of-the-art RDMA features. MPI-3 RMA enables a 
powerful programming model that alleviates many message 
passing downsides. In this work, we design and develop 
bufferless protocols that demonstrate how to implement 
this interface and support scaling to millions of cores with 
negligible memory consumption while providing highest 
performance and minimal overheads. To arm program-
mers, we provide a spectrum of performance models for 
RMA functions that enable rigorous mathematical analy-
sis of application performance and facilitate the develop-
ment of codes that solve given tasks within specified time 
and energy budgets. We validate the usability of our library 
and models with several application studies with up to half a 
million processes. In a wider sense, our work illustrates how 
to use RMA principles to accelerate computation- and data-
intensive codes.

1. INTRODUCTION
Supercomputers have driven the progress of various soci-
ety’s domains by solving challenging and computation-
ally intensive problems in fields such as climate modeling, 
weather prediction, engineering, or computational physics. 
More recently, the emergence of the “Big Data” problems 
resulted in the increasing focus on designing high-per-
formance architectures that are able to process enormous 
amounts of data in domains such as personalized medi-
cine, computational biology, graph analytics, and data 
mining in general. For example, the recently established 
Graph500 list ranks supercomputers based on their ability 
to traverse enormous graphs; the results from November 
2014 illustrate that the most efficient machines can pro-
cess up to 23 trillion edges per second in graphs with more 
than 2 trillion vertices.

Supercomputers consist of massively parallel nodes, 
each supporting up to hundreds of hardware threads in a 
single shared-memory domain. Up to tens of thousands 
of such nodes can be connected with a high-performance 
network, providing large-scale distributed-memory paral-
lelism. For example, the Blue Waters machine has >700,000 
cores and a peak computational bandwidth of >13 petaflops.

Programming such large distributed computers is far 
from trivial: an ideal programming model should tame the 
complexity of the underlying hardware and offer an easy 
abstraction for the programmer to facilitate the develop-
ment of high-performance codes. Yet, it should also be able 
to effectively utilize the available massive parallelism and 
various heterogeneous processing units to ensure highest 
scalability and speedups. Moreover, there has been a grow-
ing need for the support for performance modeling: a rigorous 
mathematical analysis of application performance. Such 
formal reasoning facilitates developing codes that solve 
given tasks within the assumed time and energy budget.

The Message Passing Interface (MPI)11 is the de facto stan-
dard API used to develop applications for distributed-memory 
supercomputers. MPI specifies message passing as well as 
remote memory access semantics and offers a rich set of fea-
tures that facilitate developing highly scalable and portable 
codes; message passing has been the prevalent model so far. 
MPI’s message passing specification does not prescribe spe-
cific ways how to exchange messages and thus enables flex-
ibility in the choice of algorithms and protocols. Specifically, 
to exchange messages, senders and receivers may use eager 
or rendezvous protocols. In the former, the sender sends a 
message without coordinating with the receiver; unexpected 
messages are typically buffered. In the latter, the sender waits 
until the receiver specifies the target buffer; this may require 
additional control messages for synchronization.

Despite its popularity, message passing often introduces 
time and energy overheads caused by the rendezvous control 
messages or copying of eager buffers; eager messaging may 
also require additional space at the receiver. Finally, the 
fundamental feature of message passing is that it couples 
communication and synchronization: a message both trans-
fers the data and synchronizes the receiver with the sender. 
This may prevent effective overlap of computation and 
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communication and thus degrade performance.
The dominance of message passing has recently been 

questioned as novel hardware mechanisms are introduced, 
enabling new high-performance programming models. 
Specifically, network interfaces evolve rapidly to imple-
ment a growing set of features directly in hardware. A key 
feature of today’s high-performance networks is remote 
direct memory access (RDMA), enabling a process to directly 
access virtual memory at remote processes without involve-
ment of the operating system or activities at the remote side. 
RDMA is supported by on-chip networks in, for example, 
Intel’s SCC and IBM’s Cell systems, as well as off-chip net-
works such as InfiniBand, IBM’s PERCS or BlueGene/Q, 
Cray’s Gemini and Aries, or even RDMA over Ethernet/TCP 
(RoCE/iWARP).

The RDMA support gave rise to Remote Memory Access 
(RMA), a powerful programming model that provides the 
programmer with a Partitioned Global Address Space (PGAS) 
abstraction that unifies separate address spaces of proces-
sors while preserving the information on which parts are 
local and which are remote. A fundamental principle behind 
RMA is that it relaxes synchronization and communication and 
allows them to be managed independently. Here, processes 
use independent calls to initiate data transfer and to ensure 
the consistency of data in remote memories and the notifica-
tion of processes. Thus, RMA generalizes the principles from 
shared memory programming to distributed memory com-
puters where data coherency is explicitly managed by the pro-
grammer to ensure highest speedups.

Hardware-supported RMA has benefits over message pass-
ing in the following three dimensions: (1) time by avoiding 
synchronization overheads and additional messages in ren-
dezvous protocols, (2) energy by eliminating excessive copy-
ing of eager messages, and (3) space by removing the need for 
receiver-side buffering. Several programming environments 
embrace RMA principles: PGAS languages such as Unified 
Parallel C (UPC) or Fortran 2008 Coarrays and libraries such 
as Cray SHMEM or MPI-2 One Sided. Significant experience 
with these models has been gained in the past years1, 12, 17 and 
several key design principles for RMA programming evolved. 
Based on this experience, MPI’s standardization body, the 
MPI Forum, has revamped the RMA (or One Sided) interface 
in the latest MPI-3 specification.11 MPI-3 RMA supports the 

newest generation of RDMA hardware and codifies existing 
RMA practice. A recent textbook4 illustrates how to use this 
interface to develop high-performance large-scale codes.

However, it has yet to be shown how to implement the new 
library interface to deliver highest performance at lowest 
memory overheads. In this work, we design and develop scal-
able protocols for implementing MPI-3 RMA over RDMA 
networks, requiring O(log p) time and space per process on 
p processes. We demonstrate that the MPI-3 RMA interface 
can be implemented adding negligible overheads to the per-
formance of the utilized hardware primitives.

In a wider sense, our work answers the question if the 
MPI-3 RMA interface is a viable candidate for moving towards 
exascale computing. Moreover, it illustrates that RMA prin-
ciples provide significant speedups over message passing 
in both microbenchmarks and full production codes run-
ning on more than half a million processes. Finally, our work 
helps programmers to rigorously reason about application 
performance by providing a set of asymptotic as well as 
detailed performance models of RMA functions.

2. SCALABLE PROTOCOLS FOR RMA
We now describe protocols to implement MPI-3 RMA based 
on low-level RDMA functions. In all our protocols, we assume 
that we only have small bounded buffer space at each process 
(O (log p) for synchronization, O(1) for communication), no 
remote software agent, and only put, get, and some basic 
atomic operations (atomics) for remote accesses. Thus, our 
protocols are applicable to all current RDMA networks and 
are forward-looking towards exascale network architectures.

We divide the RMA functionality of MPI into three sep-
arate concepts: (1) window creation, (2) communication 
functions, and (3) synchronization functions.

Figure 1a shows an overview of MPI’s synchronization 
functions. They can be split into active target mode, in which 
the target process participates in the synchronization, and 
passive target mode, in which the target process is passive. 
Figure 1b shows a similar overview of MPI’s communication 
functions. Several functions can be completed in bulk with 
bulk synchronization operations or using fine-grained request 
objects and test/wait functions. However, we observed that the 
completion model only minimally affects local overheads 
and is thus not considered separately in the rest of this work.
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Figure 1. An overview of MPI-3 RMA and associated cost functions. The figure shows abstract cost functions for all operations in terms of 
their input domains. (a) Synchronization and (b) Communication. The symbol p denotes the number of processes, s is the data size, k is the 
maximum number of neighbors, and o defines an MPI operation. The notation P: {p} → T defines the input space for the performance (cost) 
function P. In this case, it indicates, for a specific MPI function, that the execution time depends only on p. We provide asymptotic cost 
functions in Section 2 and parametrized cost functions for our implementation in Section 3.
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Figure 1 also shows abstract definitions of the perfor-
mance models for each synchronization and communica-
tion operation. The performance model for each function 
depends on the exact implementation. We provide a detailed 
overview of the asymptotic as well as exact performance prop-
erties of our protocols and our implementation in the next 
sections. The different performance characteristics of com-
munication and synchronization functions make a unique 
combination of implementation options for each specific 
use-case optimal. Yet, it is not always easy to choose this best 
variant. The exact models can be used to design close-to-opti-
mal implementations (or as input for model-guided autotun-
ing) while the simpler asymptotic models can be used in the 
algorithm design phase as exemplified by Karp et al.7

To support post-petascale computers, all protocols need 
to implement each function in a scalable way, that is, con-
suming O (log p) memory and time on p processes. For the 
purpose of explanation and illustration, we choose to discuss 
a reference implementation as a use-case. However, all pro-
tocols and schemes discussed in the following can be used 
on any RDMA-capable network.

2.1. Use-case: Cray DMAPP and XPMEM
Our reference implementation used to describe RMA pro-
tocols and principles is called foMPI (fast one sided MPI). 
foMPI is a fully functional MPI-3 RMA library implementation 
for Cray Gemini (XK5, XE6) and Aries (XC30)3 systems. In 
order to maximize asynchronous progression and minimize 
overhead, foMPI interfaces to the lowest-level available 
hardware APIs.

For inter-node (network) communication, foMPI uses the 
RDMA API of Gemini and Aries networks: Distributed Memory 
Application (DMAPP). DMAPP offers put, get, and a limited set 
of atomic memory operations for certain 8 Byte datatypes. 
For intra-node communication, we use XPMEM,16 a portable 
Linux kernel module that allows to map the memory of one 
process into the virtual address space of another. All opera-
tions can be directly implemented with load and store instruc-
tions, as well as CPU atomics (e.g., using the x86 lock prefix).

foMPI’s performance properties are self-consistent (i.e., 
respective foMPI functions perform no worse than a combi-
nation of other foMPI functions that implement the same 
functionality) and thus avoid surprises for users. We now pro-
ceed to develop algorithms to implement the window cre-
ation routines that expose local memory for remote access. 
After this, we describe protocols for communication and 
synchronization functions over RDMA networks.

2.2. Scalable window creation
An MPI window is a region of process memory that is made 
accessible to remote processes. We assume that communi-
cation memory needs to be registered with the communica-
tion subsystem and that remote processes require a remote 
descriptor that is returned from the registration to access 
the memory. This is true for most of today’s RDMA inter-
faces including DMAPP and XPMEM.

Traditional Windows. These windows expose existing 
user-memory by specifying an arbitrary local base address. 
All remote accesses are relative to this address. Traditional 
windows are not scalable as they require Ω ( p) storage on 
each of the p processes in the worst case. Yet, they are use-
ful when the library can only access user-specified memory. 
Memory addresses are exchanged with two MPI_Allgather 
operations: one for DMAPP and one for XPMEM.

Allocated Windows. These windows allow the MPI library 
to allocate window memory and thus use identical base 
addresses on all nodes requiring only O (1) storage. This can 
be done with a system-wide symmetric heap or with the follow-
ing POSIX-compliant protocol: (1) a leader process chooses a 
random address and broadcasts it to other processes in the 
window, and (2) each process tries to allocate the memory 
with this specific address using mmap(). Those two steps are 
repeated until the allocation was successful on all the processes 
(this can be checked with MPI_Allreduce). This mechanism 
requires O (log p) time (with high probability).

Dynamic Windows. Here, windows can be dynamically 
resized by attaching or detaching memory regions with local 
MPI_Win_attach and MPI_Win_detach calls. They can be 
used in, for example, dynamic RMA-based data structures. 
In our implementation, the former call registers a memory 
region and inserts the information into a linked list; the latter 
removes a region from the list. Both calls require O (1) memory 
per region. The access to the list on a target is purely one sided. 
We use a local cache to reduce the number of remote accesses; 
a simple protocol uses gets to ensure the cache validity and to 
update local information if necessary.

Shared Memory Windows. These windows are only valid 
for intra-node communication, enabling efficient load and 
store accesses. They can be implemented with POSIX shared 
memory or XPMEM with constant memory overhead per 
core.5 We implement the intra-node case as a variant of allo-
cated windows, providing identical performance and full 
compatibility with shared memory windows.

2.3. Communication functions
Communication functions map nearly directly to low-level 
hardware functions, enabling significant speedups over mes-
sage passing. This is a major strength of RMA programming. 
In foMPI, put and get simply use DMAPP put and get for 
remote accesses or local memcpy for XPMEM accesses. 
Accumulates either use DMAPP atomics (for common integer 
operations on 8 Byte data) or fall back to a simple protocol 
that locks the remote window, gets the data, accumulates it 
locally, and writes it back. This fallback protocol ensures that 
the target is not involved in the communication for true pas-
sive mode. It can be improved if we allow buffering (enabling 
a space-time trade-off18) and active messages to perform the 
remote operations atomically.

We now show novel protocols to implement synchroniza-
tion modes in a scalable way on pure RDMA networks without 
remote buffering.

2.4. Scalable window synchronization
MPI defines exposure and access epochs. A process starts 
an exposure epoch to allow other processes access to its 

foMPI can be downloaded from
http://spcl.inf.ethz.ch/Research/Parallel_Programming/foMPI.
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A more detailed explanation can be found in our SC13 paper.
Lock Synchronization. We now sketch a low-overhead and 

scalable strategy to implement shared global, shared process-
local, and exclusive process-local locks on RMA systems (the 
MPI specification does not allow exclusive global locks). These 
mechanisms allows to synchronize processes and memories 
at very fine granularities. We utilize a two-level lock hierarchy: 
one global lock variable (at a designated process, called mas-
ter) and p local lock variables (one lock on each process).

Each local lock variable is used to implement a reader-
writer lock that allows one writer (exclusive lock), but many 
readers (shared locks). The highest order bit of the variable 
indicates a write access; the other bits are used to count the 
number of shared locks (cf. Ref.8). The global lock variable 
is split into two parts; they count the number of processes 
holding a shared global lock in the window and the number 
of exclusively locked processes, respectively. These variables 
enable all lock operations to complete in O (1) steps if a lock 
can be acquired immediately; they are pictured in Figure 2a.

Figure 2b shows an exemplary lock scenario for three pro-
cesses. We omit a detailed description of the protocol due 
to the lack of space (the source code is available online); we 
describe a locking scenario to illustrate the core idea behind 
the protocol. Figure 2c shows a possible execution schedule 
for the scenario from Figure 2b. Please note that we permuted 
the order of processes to (1, 0, 2) instead of the intuitive (0, 1, 2) 
to minimize overlapping lines in the figure.

memory. To access exposed memory at a remote target, the 
origin process has to be in an access epoch. Processes can 
be in access and exposure epochs simultaneously. Exposure 
epochs are only defined for active target synchronization (in 
passive target, window memory is always exposed).

Fence. MPI_Win_fence, called collectively by all processes, 
finishes the previous exposure and access epoch and opens 
the next exposure and access epoch for the whole window. 
All remote memory operations must be committed before 
leaving the fence call. We use an x86 m fence instruction 
(XPMEM) and DMAPP bulk synchronization (gsync) followed 
by an MPI barrier to ensure global completion. The asymp-
totic memory bound is O (1) and, assuming a good barrier 
implementation, the time bound is O (log p).

General Active Target Synchronization. This mode (also 
called “PSCW”) synchronizes a subset of processes of a win-
dow and thus enables synchronization at a finer granularity 
than that possible with fences. Exposure (MPI_Win_post/
MPI_Win_wait) and access epochs (MPI_Win_start/MPI_
Win_complete) can be opened and closed independently. 
A group argument is associated with each call that starts an 
epoch; it states all processes participating in the epoch. The 
calls have to ensure correct matching: if a process i speci-
fies a process j in the group argument of the post call, then 
the next start call at process j with i in the group argument 
matches the post call.

Since our RMA implementation cannot assume buffer 
space for remote operations, it has to ensure that all pro-
cesses in the group argument of the start call have issued a 
matching post before the start returns. Similarly, the wait 
call has to ensure that all matching processes have issued 
complete. Thus, calls to MPI_Win_start and MPI_Win_wait 
may block, waiting for the remote process. Both synchro-
nizations are required to ensure integrity of the accessed 
data during the epochs. The MPI specification forbids 
matching configurations where processes wait cyclically 
(deadlocks).

We now describe a scalable matching protocol with a 
time and memory complexity of O (k) if each process has at 
most k neighbors across all epochs. We assume k is known 
to the protocol. We start with a high-level description: pro-
cess i that posts an epoch announces itself to all processes  
 j1, . . . , jl in the group argument by adding i to a list local to 
the processes j1, . . . , jl. Each process j that tries to start an 
access epoch waits until all processes i1, . . . , im in the group 
argument are present in its local list. The main complexity 
lies in the scalable storage of this neighbor list, needed for 
start, which requires a remote free-storage management 
scheme. The wait call can simply be synchronized with a 
completion counter. A process calling wait will not return 
until the completion counter reaches the number of pro-
cesses in the specified group. To enable this, the complete 
call first guarantees remote visibility of all issued RMA 
operations (by calling mfence or DMAPP’s gsync) and then 
increases the completion counter at all processes of the 
specified group.

If k is the size of the group, then the number of opera-
tions issued by post and complete is O (k) and zero for start 
and wait. We assume that k ∈ O (log p) in scalable programs. 
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Figure 2. Example of lock synchronization. (a) Data structures, 
(b) Source code, and (c) A possible schedule.
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An acquisition of a shared global lock (MPI_Win_lock_all) 
only involves the global lock on the master. The origin 
(Process 1) fetches and increases the lock in one atomic 
operation. Since there is no exclusive lock present, Process 1 
can proceed. Otherwise, it would repeatedly (remotely) read 
the lock until no writer was present; exponential back off 
can be used to avoid congestion.

For a local exclusive lock, the origin needs to ensure two 
invariants: (1) no shared global lock and (2) no local shared 
or exclusive lock can be held or acquired during the local 
exclusive lock. For the first part, the origin (Process 2) atom-
ically fetches the global lock from the master and increases 
the writer part to register for an exclusive lock. If the fetched 
value indicates lock all accesses, the origin backs off. As 
there is no global reader, Process 2 proceeds to the second 
invariant and tries to acquire an exclusive local lock on 
Process 1 using a compare-and-swap (CAS) with zero (cf. 
Ref.8). It succeeds and acquires the lock. If one of the two 
steps fails, the origin backs off and repeats the operation.

When unlocking (MPI_Win_unlock_all) a shared 
global lock, the origin only atomically decreases the 
global lock on the master. The unlocking of an exclusive 
lock requires two steps: clearing the exclusive bit of the 
local lock, and then atomically decreasing the writer 
part of the global lock.

The acquisition or release of a shared local lock (MPI_
Win_lock/MPI_Win_unlock) is similar to the shared global 
case, except it targets a local lock.

If no exclusive locks exist, then shared locks (both local 
and global) only take one remote atomic operation. The 
number of remote requests while waiting can be bound 
by using MCS locks.9 An exclusive lock will take in the best 
case two atomic communication operations. Unlock opera-
tions always cost one atomic operation, except for the exclu-
sive case with one extra atomic operation for releasing the 
global lock. The memory overhead for all functions is O (1).

Flush. Flush guarantees remote completion and is 
thus one of the most performance-critical functions on 
MPI-3 RMA programming. foMPI’s flush implementation 
relies on the underlying interfaces and simply issues a 
DMAPP remote bulk completion and an x86 mfence. All 

flush operations (MPI_Win_flush, MPI_Win_flush_local, 
MPI_Win_flush_all, and MPI_Win_flush_all_local) share the 
same implementation and add only 78 CPU instructions (on 
x86) to the critical path.

3. DETAILED PERFORMANCE MODELING  
AND EVALUATION
We now analyze the performance of our protocols and 
implementation and compare it to Cray MPI’s highly tuned 
point-to-point as well as its relatively untuned one sided 
communication. In addition, we compare foMPI with 
two major HPC PGAS languages: UPC and Fortran 2008 
Coarrays, both specially tuned for Cray systems. We exe-
cute all benchmarks on the Blue Waters supercomputer, 
using Cray XE6 nodes. Each node contains four 8-core 
AMD Opteron 6276 (Interlagos) 2.3GHz CPUs and is con-
nected to other nodes through a 3D-Torus Gemini network. 
Additional results can be found in the original SC13 paper.

3.1. Communication
Comparing latency and bandwidth between RMA and point-
to-point communication is not always fair since RMA com-
munication may require extra synchronization to notify the 
target. For all RMA latency results we ensure remote com-
pletion (the data is committed in remote memory) but no 
synchronization. We analyze synchronization costs sepa-
rately in Section 3.2.

Latency and Bandwidth. We start with the analysis of 
latency and bandwidth. The former is important in vari-
ous latency-constrained codes such as interactive graph 
processing frameworks and search engines. The latter rep-
resents a broad class of communication-intensive appli-
cations such as graph analytics engines or distributed 
key-value stores.

We measure point-to-point latency with standard ping-
pong techniques. Figure 3a shows the latency for varying 
message sizes for inter-node put. Due to the highly opti-
mized fast-path, foMPI has >50% lower latency than other 
PGAS models while achieving the same bandwidth for 
larger messages. The performance functions (cf. Figure 1) 
are: Pput = 0.16ns ⋅ s + 1ms and Pget = 0.17ns ⋅ s + 1.9ms.

1

10

100

8 64 512 4096 32768 262144

Size [Bytes]

  

La
te

nc
y 

[u
s]

Transport Layer
FOMPI MPI−3
Cray UPC
Cray MPI−2.2
Cray MPI−1
Cray Fortran 2008 0

25

50

75

100

8 64 512 4096 32768 262144 2097152

Size [Bytes]

O
ve

rl
ap

 [
%

]

Transport Layer
FOMPI MPI−3
Cray UPC
Cray MPI−2.2

0.001

0.010

0.100

1.000

8 64 512 4096 32768 262144

Message Size [Bytes]

M
es

sa
ge

 R
at

e 
[M

ill
io

n 
M

es
./S

ec
.]

Transport Layer
FOMPI MPI−3
Cray UPC
Cray MPI−2.2
Cray MPI−1
Cray Fortran 2008

1.0

1.5

2.0

2.5

8 16 32 64

(a) Latency Inter-Node Put (b) Overlap Inter-Node (c) Message Rate Inter-Node

1

2

3

4

8 16 32 64

DMAPP protocol
change

DMAPP protocol
change

DMAPP
protocol
change

Figure 3. Microbenchmarks: (a) Latency comparison for put with DMAPP communication. Note that message passing (MPI-1) implies 
remote synchronization while UPC, Fortran 2008 Coarrays, and MPI-2.2/3 only guarantee consistency. (b) Communication/computation 
overlap for put over DMAPP, Cray MPI-2.2 has much higher latency up to 64 KB (cf. a), thus allows higher overlap. (c) Message rate for put 
communication.



 

OCTOBER 2018  |   VOL.  61  |   NO.  10  |   COMMUNICATIONS OF THE ACM     111

explicitly or rely on synchronization side effects of other 
functions (e.g., allreduce).

Global Synchronization. Global synchronization is 
performed in applications based on the Bulk Synchronous 
Parallel (BSP) model. It is offered by fences in MPI. It can 
be directly compared to Fortran 2008 Coarrays sync all and 
UPC’s upc_barrier which also synchronize the memory at all 
processes. Figure 4b compares the performance of foMPI 
with Cray’s MPI-2.2, UPC, and Fortran 2008 Coarrays imple-
mentations. The performance function for foMPI’s fence 
implementation is: Pfence = 2.9ms ⋅ log2(p).

General Active Target Synchronization (PSCW). This 
mode may accelerate codes where the communication 
graph is static or changes infrequently, for example sten-
cil computations. Only MPI offers PSCW. Figure 4c shows 
the performance for Cray MPI-2.2 and foMPI when syn-
chronizing a ring where each process has exactly two 
neighbors (k = 2). An ideal implementation would exhibit 
constant time. We observe systematically growing over-
heads in Cray’s MPI as well as system noise (due to network 
congestion, OS interrupts and deamons, and others) on 
runs with >1000 processes with foMPI. We model the per-
formance with varying numbers of neighbors and foMPI’s 
PSCW synchronization costs involving k off-node neigh-
bor are Ppost = Pcomplete = 350ns ⋅ k, and Pstart = 0.7ms, Pwait = 
1.8ms (without noise).

Passive Target Synchronization. Finally, we evaluate lock-
based synchronization that can be utilized to develop 
high-performance distributed-memory variants of shared-
memory lock-based codes. The performance of lock/unlock 
is constant in the number of processes as ensured by our 
protocols and thus not graphed. The performance functions 
are Plock,excl = 5.4ms, Plock,shrd = Plock_all = 2.7ms, Punlock,shrd = Punlock_all 
= 0.4ms, Punlock,excl = 4.0ms, Pflush = 76ns, and Psync = 17ns.

We demonstrated the performance of our protocols 
and implementation using microbenchmarks comparing 
to other RMA and message passing codes. The exact per-
formance models can be utilized to design and optimize 
parallel applications, however, this is outside the scope of 
the paper. To demonstrate the usability and performance 
of our design for real codes, we continue with a large-scale 
application study.

Overlapping Computation. Overlapping computation 
with communication is a technique in which computa-
tion is progressed while waiting for communication to be 
finished. Thus, it reduces the number of idle CPU cycles. 
Here, we measure how much of such overlap can be 
achieved with the compared libraries and languages. The 
benchmark calibrates a computation loop to consume 
slightly more time than the latency. Then it places com-
putation between communication and synchronization 
and measures the combined time. The ratio of overlapped 
computation is then computed from the measured com-
munication, computation, and combined times. Figure 
3b shows the ratio of the overlapped communication for 
Cray’s MPI-2.2, UPC, and foMPI.

Message Rate. This benchmark is similar to the latency 
benchmark. However, it benchmarks the start of 1000 trans-
actions without synchronization to determine the overhead 
for starting a single operation. Figure 3c presents the results 
for the inter-node case. Here, injecting a single 8 Byte opera-
tion costs only 416ns.

Atomics. As the next step we analyze the performance of 
various atomics that are used in a broad class of lock-free 
and wait-free codes. Figure 4a shows the performance of the 
DMAPP-accelerated MPI_SUM of 8 Byte elements, a non-
accelerated MPI_MIN, and 8 Byte CAS. The performance 
functions are Pacc,sum = 28ns ⋅ s + 2.4ms, Pacc,min = 0.8ns ⋅ s + 7.3ms, 
and PCAS = 2.4ms. The DMAPP acceleration lowers the latency 
for small operations while the locked implementation exhib-
its a higher bandwidth. However, this does not consider the 
serialization due to the locking.

3.2. Synchronization schemes
Finally, we evaluate synchronization schemes utilized 
in numerous parallel protocols and systems. The differ-
ent synchronization modes have nontrivial trade-offs. 
For example PSCW performs better for small groups of 
processes and fence performs best for groups that are 
essentially as big as the full group attached to the win-
dow. However, the exact crossover point is a function of 
the implementation and system. While the active target 
mode notifies the target implicitly that its memory is con-
sistent, in passive target mode, the user has to do this 
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4. ACCELERATING FULL CODES WITH RMA
To compare our protocols and implementation with the state 
of the art, we analyze a 3D FFT code as well as the MIMD 
Lattice Computation (MILC) full production application 
with several hundred thousand lines of source code that 
performs quantum field theory computations. Other appli-
cation case-studies can be found in the original SC13 paper, 
they include a distributed hashtable representing many big 
data and analytics applications and a dynamic sparse data 
exchange representing graph traversals and complex modern 
scientific codes such as n-body methods.

In all the codes, we keep most parameters constant to com-
pare the performance of PGAS languages, message passing, 
and MPI RMA. Thus, we did not employ advanced concepts, 
such as MPI datatypes or process topologies, which are not 
available in all designs (e.g., UPC and Fortran 2008).

4.1. 3D fast Fourier transform
We now discuss how to exploit overlap of computation and 
communication in a 3D Fast Fourier Transformation. We use 
Cray’s MPI and UPC versions of the NAS 3D FFT benchmark. 
Nishtala et al.12 and Bell et al.1 demonstrated that overlap of 
computation and communication can be used to improve 
the performance of a 2D-decomposed 3D FFT. We compare 
the default “nonblocking MPI” with the “UPC slab” decom-
position, which starts to communicate the data of a plane as 
soon as it is available and completes the communication as 
late as possible. For a fair comparison, our foMPI implemen-
tation uses the same decomposition and communication 
scheme like the UPC version and required minimal code 
changes resulting in the same code complexity.

Figure 5 illustrates the results for the strong scaling class D 
benchmark (2048 × 1024 × 1024). UPC achieves a consistent 
speedup over message passing, mostly due to the communi-
cation and computation overlap. foMPI has a some-what 
lower static overhead than UPC and thus enables better over-
lap (cf. Figure 3b) and slightly higher performance.

4.2. MIMD lattice computation
The MIMD Lattice Computation (MILC) Collaboration stud-
ies Quantum Chromodynamics (QCD), the theory of strong 
interaction.2 The group develops a set of applications, 
known as the MILC code, which regularly gets one of the 
largest allocations at US NSF supercomputer centers. The 

su3_rmd module, which is part of the SPEC CPU2006 and 
SPEC MPI benchmarks, is included in the MILC code.

The program performs a stencil computation on a 4D 
rectangular grid and it decomposes the domain in all four 
dimensions to minimize the surface-to-volume ratio. To 
keep data consistent, neighbor communication is per-
formed in all eight directions. Global allreductions are 
done regularly to check the solver convergence. The most 
time-consuming part of MILC is the conjugate gradient 
solver which uses nonblocking communication overlapped 
with local computations.

Figure 6 shows the execution time of the whole appli-
cation for a weak-scaling problem with a local lattice 
of 43 × 8, a size very similar to the original Blue Waters 
Petascale benchmark. Some computation phases (e.g., 
CG) execute up to 45% faster, yet, we chose to report 
full-code performance. Cray’s UPC and foMPI exhibit 
essentially the same performance, while the UPC code 
uses Cray-specific tuning15 and the MPI-3 code is por-
table to different architectures. The full-application 
performance gain over Cray’s MPI-1 version is more 
than 15% for some configurations. The application was 
scaled successfully to up to 524,288 processes with all 
implementations. This result and our microbenchmarks 
demonstrate the scalability and performance of our 
protocols and that the MPI-3 RMA library interface can 
achieve speedups competitive to compiled languages 
such as UPC and Fortran 2008 Coarrays while offering all 
of MPI’s convenient functionalities (e.g., Topologies and 
Datatypes). Finally, we illustrate that the new MPI-3 RMA 
semantics enable full applications to achieve significant 
speedups over message passing in a fully portable way. 
Since most of those existing codes are written in MPI, 
a step-wise transformation can be used to optimize most 
critical parts first.

5. RELATED WORK
PGAS programming has been investigated in the context of 
UPC and Fortran 2008 Coarrays. For example, an optimized 
UPC Barnes Hut implementation shows similarities to MPI-3 
RMA programming by using bulk vectorized memory trans-
fers combined with vector reductions instead of shared 
pointer accesses.17 Highly optimized PGAS applications 
often use a style that can easily be adapted to MPI-3 RMA.
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The intricacies of MPI-2.2 RMA implementations over 
InfiniBand networks have been discussed by Jian et al.6 and 
Santhanaraman et al.14 Zhao et al.18 describe an adaptive strat-
egy to switch from eager to lazy modes in active target synchro-
nizations in MPICH 2. This mode could be used to speed up 
these of foMPI’s atomics that are not supported in hardware.

The applicability of MPI-2.2 RMA has also been demon-
strated for some applications. Mirin and Sawyer10 discuss 
the usage of MPI-2.2 RMA coupled with threading to improve 
the Community Atmosphere Model (CAM). Potluri et al.13 
show that MPI-2.2 RMA with overlap can improve the com-
munication in a Seismic Modeling application. However, we 
demonstrated new MPI-3 features, such as lock-all epochs, 
flushes, and allocated windows, which can be used to further 
improve performance by utilizing state-of-the-art RDMA fea-
tures and simplify implementations.

6. DISCUSSION AND CONCLUSION
In this work, we demonstrate how the MPI-3 RMA library 
interface can be implemented over RDMA networks to 
achieve highest performance and lowest memory over-
heads. We provide detailed performance models that help 
choosing among the multiple options. For example, a user 
can decide whether to use Fence or PSCW synchronization (if 
Pfence > Ppost + Pcomplete + Pstart + Pwait, which is true for large k). 
This is just one example for the possible uses of the provided 
detailed performance models.

We study all overheads in detail and provide performance 
evaluations for all critical RMA functions. Our implemen-
tation proved to be scalable and robust while running on 
524,288 processes on Blue Waters speeding up a full appli-
cation run by 13.8% and a 3D FFT on 65,536 processes by a 
factor of two. These gains will directly translate to signifi-
cant energy savings in big data and HPC computations.

We expect that the principles and scalable synchroniza-
tion algorithms developed in this work will act as a blueprint 
for optimized RMA implementations over future large-scale 
RDMA networks. We also conjecture that the demonstra-
tion of highest performance to users will quickly increase 
the number of RMA programs. Finally, as the presented 
techniques can be applied to data-centric codes, we expect 
that RMA programming will also accelerate emerging data 
center computations.
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