
106 COMMUNICATIONS OF THE ACM | OCTOBER 2018 | VOL. 61 | NO. 10

research highlights

DOI:10.1145/3264413

Enabling Highly Scalable Remote
Memory Access Programming
with MPI-3 One Sided
By Robert Gerstenberger,* Maciej Besta, and Torsten Hoefler

Abstract
Modern high-performance networks offer remote direct
memory access (RDMA) that exposes a process’ virtual
address space to other processes in the network. The
Message Passing Interface (MPI) specification has recently
been extended with a programming interface called MPI-3
Remote Memory Access (MPI-3 RMA) for efficiently exploit-
ing state-of-the-art RDMA features. MPI-3 RMA enables a
powerful programming model that alleviates many message
passing downsides. In this work, we design and develop
bufferless protocols that demonstrate how to implement
this interface and support scaling to millions of cores with
negligible memory consumption while providing highest
performance and minimal overheads. To arm program-
mers, we provide a spectrum of performance models for
RMA functions that enable rigorous mathematical analy-
sis of application performance and facilitate the develop-
ment of codes that solve given tasks within specified time
and energy budgets. We validate the usability of our library
and models with several application studies with up to half a
million processes. In a wider sense, our work illustrates how
to use RMA principles to accelerate computation- and data-
intensive codes.

1. INTRODUCTION
Supercomputers have driven the progress of various soci-
ety’s domains by solving challenging and computation-
ally intensive problems in fields such as climate modeling,
weather prediction, engineering, or computational physics.
More recently, the emergence of the “Big Data” problems
resulted in the increasing focus on designing high-per-
formance architectures that are able to process enormous
amounts of data in domains such as personalized medi-
cine, computational biology, graph analytics, and data
mining in general. For example, the recently established
Graph500 list ranks supercomputers based on their ability
to traverse enormous graphs; the results from November
2014 illustrate that the most efficient machines can pro-
cess up to 23 trillion edges per second in graphs with more
than 2 trillion vertices.

Supercomputers consist of massively parallel nodes,
each supporting up to hundreds of hardware threads in a
single shared-memory domain. Up to tens of thousands
of such nodes can be connected with a high-performance
network, providing large-scale distributed-memory paral-
lelism. For example, the Blue Waters machine has >700,000
cores and a peak computational bandwidth of >13 petaflops.

Programming such large distributed computers is far
from trivial: an ideal programming model should tame the
complexity of the underlying hardware and offer an easy
abstraction for the programmer to facilitate the develop-
ment of high-performance codes. Yet, it should also be able
to effectively utilize the available massive parallelism and
various heterogeneous processing units to ensure highest
scalability and speedups. Moreover, there has been a grow-
ing need for the support for performance modeling: a rigorous
mathematical analysis of application performance. Such
formal reasoning facilitates developing codes that solve
given tasks within the assumed time and energy budget.

The Message Passing Interface (MPI)11 is the de facto stan-
dard API used to develop applications for distributed-memory
supercomputers. MPI specifies message passing as well as
remote memory access semantics and offers a rich set of fea-
tures that facilitate developing highly scalable and portable
codes; message passing has been the prevalent model so far.
MPI’s message passing specification does not prescribe spe-
cific ways how to exchange messages and thus enables flex-
ibility in the choice of algorithms and protocols. Specifically,
to exchange messages, senders and receivers may use eager
or rendezvous protocols. In the former, the sender sends a
message without coordinating with the receiver; unexpected
messages are typically buffered. In the latter, the sender waits
until the receiver specifies the target buffer; this may require
additional control messages for synchronization.

Despite its popularity, message passing often introduces
time and energy overheads caused by the rendezvous control
messages or copying of eager buffers; eager messaging may
also require additional space at the receiver. Finally, the
fundamental feature of message passing is that it couples
communication and synchronization: a message both trans-
fers the data and synchronizes the receiver with the sender.
This may prevent effective overlap of computation and

The original version of this paper was published in the
Proceedings of the Supercomputing Conference 2013 (SC’13),
Nov. 2013, ACM.

*  RG performed much of the implementation during an internship at UIUC/
NCSA while the analysis and documentation was performed during a scientific
visit at ETH Zurich. RG’s primary email address is gerstenberger.robert@
gmail.com.

http://dx.doi.org/10.1145/3264413

OCTOBER 2018 | VOL. 61 | NO. 10 | COMMUNICATIONS OF THE ACM 107

communication and thus degrade performance.
The dominance of message passing has recently been

questioned as novel hardware mechanisms are introduced,
enabling new high-performance programming models.
Specifically, network interfaces evolve rapidly to imple-
ment a growing set of features directly in hardware. A key
feature of today’s high-performance networks is remote
direct memory access (RDMA), enabling a process to directly
access virtual memory at remote processes without involve-
ment of the operating system or activities at the remote side.
RDMA is supported by on-chip networks in, for example,
Intel’s SCC and IBM’s Cell systems, as well as off-chip net-
works such as InfiniBand, IBM’s PERCS or BlueGene/Q,
Cray’s Gemini and Aries, or even RDMA over Ethernet/TCP
(RoCE/iWARP).

The RDMA support gave rise to Remote Memory Access
(RMA), a powerful programming model that provides the
programmer with a Partitioned Global Address Space (PGAS)
abstraction that unifies separate address spaces of proces-
sors while preserving the information on which parts are
local and which are remote. A fundamental principle behind
RMA is that it relaxes synchronization and communication and
allows them to be managed independently. Here, processes
use independent calls to initiate data transfer and to ensure
the consistency of data in remote memories and the notifica-
tion of processes. Thus, RMA generalizes the principles from
shared memory programming to distributed memory com-
puters where data coherency is explicitly managed by the pro-
grammer to ensure highest speedups.

Hardware-supported RMA has benefits over message pass-
ing in the following three dimensions: (1) time by avoiding
synchronization overheads and additional messages in ren-
dezvous protocols, (2) energy by eliminating excessive copy-
ing of eager messages, and (3) space by removing the need for
receiver-side buffering. Several programming environments
embrace RMA principles: PGAS languages such as Unified
Parallel C (UPC) or Fortran 2008 Coarrays and libraries such
as Cray SHMEM or MPI-2 One Sided. Significant experience
with these models has been gained in the past years1, 12, 17 and
several key design principles for RMA programming evolved.
Based on this experience, MPI’s standardization body, the
MPI Forum, has revamped the RMA (or One Sided) interface
in the latest MPI-3 specification.11 MPI-3 RMA supports the

newest generation of RDMA hardware and codifies existing
RMA practice. A recent textbook4 illustrates how to use this
interface to develop high-performance large-scale codes.

However, it has yet to be shown how to implement the new
library interface to deliver highest performance at lowest
memory overheads. In this work, we design and develop scal-
able protocols for implementing MPI-3 RMA over RDMA
networks, requiring O(log p) time and space per process on
p processes. We demonstrate that the MPI-3 RMA interface
can be implemented adding negligible overheads to the per-
formance of the utilized hardware primitives.

In a wider sense, our work answers the question if the
MPI-3 RMA interface is a viable candidate for moving towards
exascale computing. Moreover, it illustrates that RMA prin-
ciples provide significant speedups over message passing
in both microbenchmarks and full production codes run-
ning on more than half a million processes. Finally, our work
helps programmers to rigorously reason about application
performance by providing a set of asymptotic as well as
detailed performance models of RMA functions.

2. SCALABLE PROTOCOLS FOR RMA
We now describe protocols to implement MPI-3 RMA based
on low-level RDMA functions. In all our protocols, we assume
that we only have small bounded buffer space at each process
(O (log p) for synchronization, O(1) for communication), no
remote software agent, and only put, get, and some basic
atomic operations (atomics) for remote accesses. Thus, our
protocols are applicable to all current RDMA networks and
are forward-looking towards exascale network architectures.

We divide the RMA functionality of MPI into three sep-
arate concepts: (1) window creation, (2) communication
functions, and (3) synchronization functions.

Figure 1a shows an overview of MPI’s synchronization
functions. They can be split into active target mode, in which
the target process participates in the synchronization, and
passive target mode, in which the target process is passive.
Figure 1b shows a similar overview of MPI’s communication
functions. Several functions can be completed in bulk with
bulk synchronization operations or using fine-grained request
objects and test/wait functions. However, we observed that the
completion model only minimally affects local overheads
and is thus not considered separately in the rest of this work.

passive targetactive target

: {} → T

P P: {} → T

: {} → T

P: {k} → T

Sync Flush

Fence Post/Start/
Complete/Wait Lock/Unlock Lock_all/

Unlock_all
P

P

:{p} → T

: {} → T

: {} → T

Flush_local Flush_allFlush_local_all
: {}→ T : {} → T

(a) (b)

accumulate

:{s, o} → T : {s, o} → T :{s} → T

: {s}→ T : {s} → T

:{s, o} → T

bulk completion
fine grained
completion

Accumulate Get_accumulate Fetch_and_op CAS

GetPut

P P P P

P

P P P P

P

Figure 1. An overview of MPI-3 RMA and associated cost functions. The figure shows abstract cost functions for all operations in terms of
their input domains. (a) Synchronization and (b) Communication. The symbol p denotes the number of processes, s is the data size, k is the
maximum number of neighbors, and o defines an MPI operation. The notation P: {p} → T defines the input space for the performance (cost)
function P. In this case, it indicates, for a specific MPI function, that the execution time depends only on p. We provide asymptotic cost
functions in Section 2 and parametrized cost functions for our implementation in Section 3.

research highlights

108 COMMUNICATIONS OF THE ACM | OCTOBER 2018 | VOL. 61 | NO. 10

Figure 1 also shows abstract definitions of the perfor-
mance models for each synchronization and communica-
tion operation. The performance model for each function
depends on the exact implementation. We provide a detailed
overview of the asymptotic as well as exact performance prop-
erties of our protocols and our implementation in the next
sections. The different performance characteristics of com-
munication and synchronization functions make a unique
combination of implementation options for each specific
use-case optimal. Yet, it is not always easy to choose this best
variant. The exact models can be used to design close-to-opti-
mal implementations (or as input for model-guided autotun-
ing) while the simpler asymptotic models can be used in the
algorithm design phase as exemplified by Karp et al.7

To support post-petascale computers, all protocols need
to implement each function in a scalable way, that is, con-
suming O (log p) memory and time on p processes. For the
purpose of explanation and illustration, we choose to discuss
a reference implementation as a use-case. However, all pro-
tocols and schemes discussed in the following can be used
on any RDMA-capable network.

2.1. Use-case: Cray DMAPP and XPMEM
Our reference implementation used to describe RMA pro-
tocols and principles is called foMPI (fast one sided MPI).
foMPI is a fully functional MPI-3 RMA library implementation
for Cray Gemini (XK5, XE6) and Aries (XC30)3 systems. In
order to maximize asynchronous progression and minimize
overhead, foMPI interfaces to the lowest-level available
hardware APIs.

For inter-node (network) communication, foMPI uses the
RDMA API of Gemini and Aries networks: Distributed Memory
Application (DMAPP). DMAPP offers put, get, and a limited set
of atomic memory operations for certain 8 Byte datatypes.
For intra-node communication, we use XPMEM,16 a portable
Linux kernel module that allows to map the memory of one
process into the virtual address space of another. All opera-
tions can be directly implemented with load and store instruc-
tions, as well as CPU atomics (e.g., using the x86 lock prefix).

foMPI’s performance properties are self-consistent (i.e.,
respective foMPI functions perform no worse than a combi-
nation of other foMPI functions that implement the same
functionality) and thus avoid surprises for users. We now pro-
ceed to develop algorithms to implement the window cre-
ation routines that expose local memory for remote access.
After this, we describe protocols for communication and
synchronization functions over RDMA networks.

2.2. Scalable window creation
An MPI window is a region of process memory that is made
accessible to remote processes. We assume that communi-
cation memory needs to be registered with the communica-
tion subsystem and that remote processes require a remote
descriptor that is returned from the registration to access
the memory. This is true for most of today’s RDMA inter-
faces including DMAPP and XPMEM.

Traditional Windows. These windows expose existing
user-memory by specifying an arbitrary local base address.
All remote accesses are relative to this address. Traditional
windows are not scalable as they require Ω ( p) storage on
each of the p processes in the worst case. Yet, they are use-
ful when the library can only access user-specified memory.
Memory addresses are exchanged with two MPI_Allgather
operations: one for DMAPP and one for XPMEM.

Allocated Windows. These windows allow the MPI library
to allocate window memory and thus use identical base
addresses on all nodes requiring only O (1) storage. This can
be done with a system-wide symmetric heap or with the follow-
ing POSIX-compliant protocol: (1) a leader process chooses a
random address and broadcasts it to other processes in the
window, and (2) each process tries to allocate the memory
with this specific address using mmap(). Those two steps are
repeated until the allocation was successful on all the processes
(this can be checked with MPI_Allreduce). This mechanism
requires O (log p) time (with high probability).

Dynamic Windows. Here, windows can be dynamically
resized by attaching or detaching memory regions with local
MPI_Win_attach and MPI_Win_detach calls. They can be
used in, for example, dynamic RMA-based data structures.
In our implementation, the former call registers a memory
region and inserts the information into a linked list; the latter
removes a region from the list. Both calls require O (1) memory
per region. The access to the list on a target is purely one sided.
We use a local cache to reduce the number of remote accesses;
a simple protocol uses gets to ensure the cache validity and to
update local information if necessary.

Shared Memory Windows. These windows are only valid
for intra-node communication, enabling efficient load and
store accesses. They can be implemented with POSIX shared
memory or XPMEM with constant memory overhead per
core.5 We implement the intra-node case as a variant of allo-
cated windows, providing identical performance and full
compatibility with shared memory windows.

2.3. Communication functions
Communication functions map nearly directly to low-level
hardware functions, enabling significant speedups over mes-
sage passing. This is a major strength of RMA programming.
In foMPI, put and get simply use DMAPP put and get for
remote accesses or local memcpy for XPMEM accesses.
Accumulates either use DMAPP atomics (for common integer
operations on 8 Byte data) or fall back to a simple protocol
that locks the remote window, gets the data, accumulates it
locally, and writes it back. This fallback protocol ensures that
the target is not involved in the communication for true pas-
sive mode. It can be improved if we allow buffering (enabling
a space-time trade-off18) and active messages to perform the
remote operations atomically.

We now show novel protocols to implement synchroniza-
tion modes in a scalable way on pure RDMA networks without
remote buffering.

2.4. Scalable window synchronization
MPI defines exposure and access epochs. A process starts
an exposure epoch to allow other processes access to its

foMPI can be downloaded from
http://spcl.inf.ethz.ch/Research/Parallel_Programming/foMPI.

OCTOBER 2018 | VOL. 61 | NO. 10 | COMMUNICATIONS OF THE ACM 109

A more detailed explanation can be found in our SC13 paper.
Lock Synchronization. We now sketch a low-overhead and

scalable strategy to implement shared global, shared process-
local, and exclusive process-local locks on RMA systems (the
MPI specification does not allow exclusive global locks). These
mechanisms allows to synchronize processes and memories
at very fine granularities. We utilize a two-level lock hierarchy:
one global lock variable (at a designated process, called mas-
ter) and p local lock variables (one lock on each process).

Each local lock variable is used to implement a reader-
writer lock that allows one writer (exclusive lock), but many
readers (shared locks). The highest order bit of the variable
indicates a write access; the other bits are used to count the
number of shared locks (cf. Ref.8). The global lock variable
is split into two parts; they count the number of processes
holding a shared global lock in the window and the number
of exclusively locked processes, respectively. These variables
enable all lock operations to complete in O (1) steps if a lock
can be acquired immediately; they are pictured in Figure 2a.

Figure 2b shows an exemplary lock scenario for three pro-
cesses. We omit a detailed description of the protocol due
to the lack of space (the source code is available online); we
describe a locking scenario to illustrate the core idea behind
the protocol. Figure 2c shows a possible execution schedule
for the scenario from Figure 2b. Please note that we permuted
the order of processes to (1, 0, 2) instead of the intuitive (0, 1, 2)
to minimize overlapping lines in the figure.

memory. To access exposed memory at a remote target, the
origin process has to be in an access epoch. Processes can
be in access and exposure epochs simultaneously. Exposure
epochs are only defined for active target synchronization (in
passive target, window memory is always exposed).

Fence. MPI_Win_fence, called collectively by all processes,
finishes the previous exposure and access epoch and opens
the next exposure and access epoch for the whole window.
All remote memory operations must be committed before
leaving the fence call. We use an x86 m fence instruction
(XPMEM) and DMAPP bulk synchronization (gsync) followed
by an MPI barrier to ensure global completion. The asymp-
totic memory bound is O (1) and, assuming a good barrier
implementation, the time bound is O (log p).

General Active Target Synchronization. This mode (also
called “PSCW”) synchronizes a subset of processes of a win-
dow and thus enables synchronization at a finer granularity
than that possible with fences. Exposure (MPI_Win_post/
MPI_Win_wait) and access epochs (MPI_Win_start/MPI_
Win_complete) can be opened and closed independently.
A group argument is associated with each call that starts an
epoch; it states all processes participating in the epoch. The
calls have to ensure correct matching: if a process i speci-
fies a process j in the group argument of the post call, then
the next start call at process j with i in the group argument
matches the post call.

Since our RMA implementation cannot assume buffer
space for remote operations, it has to ensure that all pro-
cesses in the group argument of the start call have issued a
matching post before the start returns. Similarly, the wait
call has to ensure that all matching processes have issued
complete. Thus, calls to MPI_Win_start and MPI_Win_wait
may block, waiting for the remote process. Both synchro-
nizations are required to ensure integrity of the accessed
data during the epochs. The MPI specification forbids
matching configurations where processes wait cyclically
(deadlocks).

We now describe a scalable matching protocol with a
time and memory complexity of O (k) if each process has at
most k neighbors across all epochs. We assume k is known
to the protocol. We start with a high-level description: pro-
cess i that posts an epoch announces itself to all processes
 j1, . . . , jl in the group argument by adding i to a list local to
the processes j1, . . . , jl. Each process j that tries to start an
access epoch waits until all processes i1, . . . , im in the group
argument are present in its local list. The main complexity
lies in the scalable storage of this neighbor list, needed for
start, which requires a remote free-storage management
scheme. The wait call can simply be synchronized with a
completion counter. A process calling wait will not return
until the completion counter reaches the number of pro-
cesses in the specified group. To enable this, the complete
call first guarantees remote visibility of all issued RMA
operations (by calling mfence or DMAPP’s gsync) and then
increases the completion counter at all processes of the
specified group.

If k is the size of the group, then the number of opera-
tions issued by post and complete is O (k) and zero for start
and wait. We assume that k ∈ O (log p) in scalable programs.

(a)

present at
all processes

Shared Counter

00000 0000000000

000 000

0 00local: local:

global:

local:

Proc 1 Proc 0 Proc 2

Shared CounterExclusive Bit Exclusive Counter

only present at
a master process

Both lock types are 64-bit integer (with reserved
bit ranges), which can be atomically modified.

(b)

(c)

Proc 1

Proc 1

Proc 0

Proc 0

MPI_Win_lock_all()
comm. + comp.
MPI_Win_unlock_all()

MPI_Win_lock(EXCL, 1)

MPI_Win_lock(EXCL, 1)

Proc 2

Proc 2

MPI_Win_lock_all()

MPI_Win_unlock_all()

compare
and swap

Proc 2 acquires an
exclusive lock on Proc 1

fetch-add

fetch-add

add

Proc 1 acquires a
shared global lock
on the whole window

Proc 1 releases a
shared global lock

comp.+
comm.

fetched
data

fetched
data

fetched
data

000 000 000

000

0

000

000 000

000

001

001

100000
00000

Figure 2. Example of lock synchronization. (a) Data structures,
(b) Source code, and (c) A possible schedule.

research highlights

110 COMMUNICATIONS OF THE ACM | OCTOBER 2018 | VOL. 61 | NO. 10

An acquisition of a shared global lock (MPI_Win_lock_all)
only involves the global lock on the master. The origin
(Process 1) fetches and increases the lock in one atomic
operation. Since there is no exclusive lock present, Process 1
can proceed. Otherwise, it would repeatedly (remotely) read
the lock until no writer was present; exponential back off
can be used to avoid congestion.

For a local exclusive lock, the origin needs to ensure two
invariants: (1) no shared global lock and (2) no local shared
or exclusive lock can be held or acquired during the local
exclusive lock. For the first part, the origin (Process 2) atom-
ically fetches the global lock from the master and increases
the writer part to register for an exclusive lock. If the fetched
value indicates lock all accesses, the origin backs off. As
there is no global reader, Process 2 proceeds to the second
invariant and tries to acquire an exclusive local lock on
Process 1 using a compare-and-swap (CAS) with zero (cf.
Ref.8). It succeeds and acquires the lock. If one of the two
steps fails, the origin backs off and repeats the operation.

When unlocking (MPI_Win_unlock_all) a shared
global lock, the origin only atomically decreases the
global lock on the master. The unlocking of an exclusive
lock requires two steps: clearing the exclusive bit of the
local lock, and then atomically decreasing the writer
part of the global lock.

The acquisition or release of a shared local lock (MPI_
Win_lock/MPI_Win_unlock) is similar to the shared global
case, except it targets a local lock.

If no exclusive locks exist, then shared locks (both local
and global) only take one remote atomic operation. The
number of remote requests while waiting can be bound
by using MCS locks.9 An exclusive lock will take in the best
case two atomic communication operations. Unlock opera-
tions always cost one atomic operation, except for the exclu-
sive case with one extra atomic operation for releasing the
global lock. The memory overhead for all functions is O (1).

Flush. Flush guarantees remote completion and is
thus one of the most performance-critical functions on
MPI-3 RMA programming. foMPI’s flush implementation
relies on the underlying interfaces and simply issues a
DMAPP remote bulk completion and an x86 mfence. All

flush operations (MPI_Win_flush, MPI_Win_flush_local,
MPI_Win_flush_all, and MPI_Win_flush_all_local) share the
same implementation and add only 78 CPU instructions (on
x86) to the critical path.

3. DETAILED PERFORMANCE MODELING
AND EVALUATION
We now analyze the performance of our protocols and
implementation and compare it to Cray MPI’s highly tuned
point-to-point as well as its relatively untuned one sided
communication. In addition, we compare foMPI with
two major HPC PGAS languages: UPC and Fortran 2008
Coarrays, both specially tuned for Cray systems. We exe-
cute all benchmarks on the Blue Waters supercomputer,
using Cray XE6 nodes. Each node contains four 8-core
AMD Opteron 6276 (Interlagos) 2.3GHz CPUs and is con-
nected to other nodes through a 3D-Torus Gemini network.
Additional results can be found in the original SC13 paper.

3.1. Communication
Comparing latency and bandwidth between RMA and point-
to-point communication is not always fair since RMA com-
munication may require extra synchronization to notify the
target. For all RMA latency results we ensure remote com-
pletion (the data is committed in remote memory) but no
synchronization. We analyze synchronization costs sepa-
rately in Section 3.2.

Latency and Bandwidth. We start with the analysis of
latency and bandwidth. The former is important in vari-
ous latency-constrained codes such as interactive graph
processing frameworks and search engines. The latter rep-
resents a broad class of communication-intensive appli-
cations such as graph analytics engines or distributed
key-value stores.

We measure point-to-point latency with standard ping-
pong techniques. Figure 3a shows the latency for varying
message sizes for inter-node put. Due to the highly opti-
mized fast-path, foMPI has >50% lower latency than other
PGAS models while achieving the same bandwidth for
larger messages. The performance functions (cf. Figure 1)
are: Pput = 0.16ns ⋅ s + 1ms and Pget = 0.17ns ⋅ s + 1.9ms.

1

10

100

8 64 512 4096 32768 262144

Size [Bytes]

La
te

nc
y

[u
s]

Transport Layer
FOMPI MPI−3
Cray UPC
Cray MPI−2.2
Cray MPI−1
Cray Fortran 2008 0

25

50

75

100

8 64 512 4096 32768 262144 2097152

Size [Bytes]

O
ve

rl
ap

 [
%

]

Transport Layer
FOMPI MPI−3
Cray UPC
Cray MPI−2.2

0.001

0.010

0.100

1.000

8 64 512 4096 32768 262144

Message Size [Bytes]

M
es

sa
ge

 R
at

e
[M

ill
io

n
M

es
./S

ec
.]

Transport Layer
FOMPI MPI−3
Cray UPC
Cray MPI−2.2
Cray MPI−1
Cray Fortran 2008

1.0

1.5

2.0

2.5

8 16 32 64

(a) Latency Inter-Node Put (b) Overlap Inter-Node (c) Message Rate Inter-Node

1

2

3

4

8 16 32 64

DMAPP protocol
change

DMAPP protocol
change

DMAPP
protocol
change

Figure 3. Microbenchmarks: (a) Latency comparison for put with DMAPP communication. Note that message passing (MPI-1) implies
remote synchronization while UPC, Fortran 2008 Coarrays, and MPI-2.2/3 only guarantee consistency. (b) Communication/computation
overlap for put over DMAPP, Cray MPI-2.2 has much higher latency up to 64 KB (cf. a), thus allows higher overlap. (c) Message rate for put
communication.

OCTOBER 2018 | VOL. 61 | NO. 10 | COMMUNICATIONS OF THE ACM 111

explicitly or rely on synchronization side effects of other
functions (e.g., allreduce).

Global Synchronization. Global synchronization is
performed in applications based on the Bulk Synchronous
Parallel (BSP) model. It is offered by fences in MPI. It can
be directly compared to Fortran 2008 Coarrays sync all and
UPC’s upc_barrier which also synchronize the memory at all
processes. Figure 4b compares the performance of foMPI
with Cray’s MPI-2.2, UPC, and Fortran 2008 Coarrays imple-
mentations. The performance function for foMPI’s fence
implementation is: Pfence = 2.9ms ⋅ log2(p).

General Active Target Synchronization (PSCW). This
mode may accelerate codes where the communication
graph is static or changes infrequently, for example sten-
cil computations. Only MPI offers PSCW. Figure 4c shows
the performance for Cray MPI-2.2 and foMPI when syn-
chronizing a ring where each process has exactly two
neighbors (k = 2). An ideal implementation would exhibit
constant time. We observe systematically growing over-
heads in Cray’s MPI as well as system noise (due to network
congestion, OS interrupts and deamons, and others) on
runs with >1000 processes with foMPI. We model the per-
formance with varying numbers of neighbors and foMPI’s
PSCW synchronization costs involving k off-node neigh-
bor are Ppost = Pcomplete = 350ns ⋅ k, and Pstart = 0.7ms, Pwait =
1.8ms (without noise).

Passive Target Synchronization. Finally, we evaluate lock-
based synchronization that can be utilized to develop
high-performance distributed-memory variants of shared-
memory lock-based codes. The performance of lock/unlock
is constant in the number of processes as ensured by our
protocols and thus not graphed. The performance functions
are Plock,excl = 5.4ms, Plock,shrd = Plock_all = 2.7ms, Punlock,shrd = Punlock_all
= 0.4ms, Punlock,excl = 4.0ms, Pflush = 76ns, and Psync = 17ns.

We demonstrated the performance of our protocols
and implementation using microbenchmarks comparing
to other RMA and message passing codes. The exact per-
formance models can be utilized to design and optimize
parallel applications, however, this is outside the scope of
the paper. To demonstrate the usability and performance
of our design for real codes, we continue with a large-scale
application study.

Overlapping Computation. Overlapping computation
with communication is a technique in which computa-
tion is progressed while waiting for communication to be
finished. Thus, it reduces the number of idle CPU cycles.
Here, we measure how much of such overlap can be
achieved with the compared libraries and languages. The
benchmark calibrates a computation loop to consume
slightly more time than the latency. Then it places com-
putation between communication and synchronization
and measures the combined time. The ratio of overlapped
computation is then computed from the measured com-
munication, computation, and combined times. Figure
3b shows the ratio of the overlapped communication for
Cray’s MPI-2.2, UPC, and foMPI.

Message Rate. This benchmark is similar to the latency
benchmark. However, it benchmarks the start of 1000 trans-
actions without synchronization to determine the overhead
for starting a single operation. Figure 3c presents the results
for the inter-node case. Here, injecting a single 8 Byte opera-
tion costs only 416ns.

Atomics. As the next step we analyze the performance of
various atomics that are used in a broad class of lock-free
and wait-free codes. Figure 4a shows the performance of the
DMAPP-accelerated MPI_SUM of 8 Byte elements, a non-
accelerated MPI_MIN, and 8 Byte CAS. The performance
functions are Pacc,sum = 28ns ⋅ s + 2.4ms, Pacc,min = 0.8ns ⋅ s + 7.3ms,
and PCAS = 2.4ms. The DMAPP acceleration lowers the latency
for small operations while the locked implementation exhib-
its a higher bandwidth. However, this does not consider the
serialization due to the locking.

3.2. Synchronization schemes
Finally, we evaluate synchronization schemes utilized
in numerous parallel protocols and systems. The differ-
ent synchronization modes have nontrivial trade-offs.
For example PSCW performs better for small groups of
processes and fence performs best for groups that are
essentially as big as the full group attached to the win-
dow. However, the exact crossover point is a function of
the implementation and system. While the active target
mode notifies the target implicitly that its memory is con-
sistent, in passive target mode, the user has to do this

1

10

1000

1000000

1 8 64 512 4096 32768 262144
Number of Elements Number of Processes Number of Processes

La
te

nc
y

[u
s]

Transport Layer
FOMPI SUM
Cray UPC aadd
FOMPI MIN
FOMPI CAS
Cray UPC CAS

2
4
6
8

10

1 2 4

1

10

100

1000

10000

2 8 32 128 512 2k 8k

La
te

nc
y

[u
s]

Global Synchronization
FOMPI Win_fence
Cray UPC barrier
Cray Fortran 2008 sync all
Cray MPI Win_fence

1

10

100

2 8 32 128 512 2k 8k 32k 128k

La
te

nc
y

[u
s]

PSCW
FOMPI
Cray MPI

(a) (b) (c)

intra-node intra-node

3.53
us

2.41 us

Figure 4. Performance of atomic accumulate operations and synchronization latencies. (a) Atomic Operation Performance, (b) Latency for
Global Synchronization, and (c) Latency for PSCW (Ring Topology).

research highlights

112 COMMUNICATIONS OF THE ACM | OCTOBER 2018 | VOL. 61 | NO. 10

4. ACCELERATING FULL CODES WITH RMA
To compare our protocols and implementation with the state
of the art, we analyze a 3D FFT code as well as the MIMD
Lattice Computation (MILC) full production application
with several hundred thousand lines of source code that
performs quantum field theory computations. Other appli-
cation case-studies can be found in the original SC13 paper,
they include a distributed hashtable representing many big
data and analytics applications and a dynamic sparse data
exchange representing graph traversals and complex modern
scientific codes such as n-body methods.

In all the codes, we keep most parameters constant to com-
pare the performance of PGAS languages, message passing,
and MPI RMA. Thus, we did not employ advanced concepts,
such as MPI datatypes or process topologies, which are not
available in all designs (e.g., UPC and Fortran 2008).

4.1. 3D fast Fourier transform
We now discuss how to exploit overlap of computation and
communication in a 3D Fast Fourier Transformation. We use
Cray’s MPI and UPC versions of the NAS 3D FFT benchmark.
Nishtala et al.12 and Bell et al.1 demonstrated that overlap of
computation and communication can be used to improve
the performance of a 2D-decomposed 3D FFT. We compare
the default “nonblocking MPI” with the “UPC slab” decom-
position, which starts to communicate the data of a plane as
soon as it is available and completes the communication as
late as possible. For a fair comparison, our foMPI implemen-
tation uses the same decomposition and communication
scheme like the UPC version and required minimal code
changes resulting in the same code complexity.

Figure 5 illustrates the results for the strong scaling class D
benchmark (2048 × 1024 × 1024). UPC achieves a consistent
speedup over message passing, mostly due to the communi-
cation and computation overlap. foMPI has a some-what
lower static overhead than UPC and thus enables better over-
lap (cf. Figure 3b) and slightly higher performance.

4.2. MIMD lattice computation
The MIMD Lattice Computation (MILC) Collaboration stud-
ies Quantum Chromodynamics (QCD), the theory of strong
interaction.2 The group develops a set of applications,
known as the MILC code, which regularly gets one of the
largest allocations at US NSF supercomputer centers. The

su3_rmd module, which is part of the SPEC CPU2006 and
SPEC MPI benchmarks, is included in the MILC code.

The program performs a stencil computation on a 4D
rectangular grid and it decomposes the domain in all four
dimensions to minimize the surface-to-volume ratio. To
keep data consistent, neighbor communication is per-
formed in all eight directions. Global allreductions are
done regularly to check the solver convergence. The most
time-consuming part of MILC is the conjugate gradient
solver which uses nonblocking communication overlapped
with local computations.

Figure 6 shows the execution time of the whole appli-
cation for a weak-scaling problem with a local lattice
of 43 × 8, a size very similar to the original Blue Waters
Petascale benchmark. Some computation phases (e.g.,
CG) execute up to 45% faster, yet, we chose to report
full-code performance. Cray’s UPC and foMPI exhibit
essentially the same performance, while the UPC code
uses Cray-specific tuning15 and the MPI-3 code is por-
table to different architectures. The full-application
performance gain over Cray’s MPI-1 version is more
than 15% for some configurations. The application was
scaled successfully to up to 524,288 processes with all
implementations. This result and our microbenchmarks
demonstrate the scalability and performance of our
protocols and that the MPI-3 RMA library interface can
achieve speedups competitive to compiled languages
such as UPC and Fortran 2008 Coarrays while offering all
of MPI’s convenient functionalities (e.g., Topologies and
Datatypes). Finally, we illustrate that the new MPI-3 RMA
semantics enable full applications to achieve significant
speedups over message passing in a fully portable way.
Since most of those existing codes are written in MPI,
a step-wise transformation can be used to optimize most
critical parts first.

5. RELATED WORK
PGAS programming has been investigated in the context of
UPC and Fortran 2008 Coarrays. For example, an optimized
UPC Barnes Hut implementation shows similarities to MPI-3
RMA programming by using bulk vectorized memory trans-
fers combined with vector reductions instead of shared
pointer accesses.17 Highly optimized PGAS applications
often use a style that can easily be adapted to MPI-3 RMA.

200

400

800

1600

1024 4096 16384 65536

Pe
rf

or
m

an
ce

 [
G

Fl
op

/s
]

Transport Layer

18
.4

% 23.8
% 10

.3
%

40.0
%

39.6
%

45.7
%

10
1.8

%

FOMPI MPI−3
Cray UPC
Cray MPI−1

Number of Processes

Figure 5. 3D FFT Performance. The annotations represent the
improvement of foMPI over message passing.

100

200

400

800

4k 8k 16k 32k 64k 128k 256k 512k

FOMPI MPI−3
Cray UPC
Cray MPI−1

Transport Layer

7.9
% 6.5

%
10

.3
% 13

.2
%

14
.8

%

5.3
% 15

.2
%

13
.8

%

Number of Processes

A
pp

lic
at

io
n

C
om

pl
et

io
n

T
im

e
[s

]

Figure 6. Full MILC code execution time. The annotations represent
the improvement of foMPI over message passing.

OCTOBER 2018 | VOL. 61 | NO. 10 | COMMUNICATIONS OF THE ACM 113

References
	 1.	 Bell, C., Bonachea, D., Nishtala, R.,

Yelick, K. Optimizing bandwidth
limited problems using one-sided
communication and overlap. In
Proceedings of the International
Conference on Parallel and
Distributed Processing (IPDPS’06)
(2006). IEEE Computer Society, 1–10.

	 2.	 Bernard, C., Ogilvie, M.C., DeGrand, T.A.,
DeTar, C.E., Gottlieb, S.A., Krasnitz, A.,
Sugar, R., Toussaint, D. Studying
quarks and gluons on MIMD parallel
computers. J. High Perform. Comput.
Appl. 5, 4 (1991), 61–70.

	 3.	 Faanes, G., Bataineh, A., Roweth, D.,
Court, T., Froese, E., Alverson, B.,
Johnson, T., Kopnick, J., Higgins, M.,
Reinhard, J. Cray Cascade: A Scalable
HPC System Based on a Dragonfly
Network. In Proceedings of the
International Conference for High
Performance Computing, Networking,
Storage and Analysis (SC’12)
(2012). IEEE Computer Society, Los
Alamitos, CA, 103:1–103:9.

	 4.	 Gropp, W., Hoefler, T., Thakur, R.,
Lusk, E. Using Advanced MPI: Modern
Features of the Message-Passing
Interface. MIT Press, Cambridge,
MA, Nov. (2014).

	 5.	 Hoefler, T., Dinan, J., Buntinas, D.,
Balaji, P., Barrett, B., Brightwell, R.,
Gropp, W., Kale, V., Thakur, R.
Leveraging MPI’s one-sided
communication interface for shared-
memory programming. In Recent
Advances in the Message Passing
Interface (EuroMPI’12), Volume
LNCS 7490 (2012). Springer, 132–141.

	 6.	 Jiang, W., Liu, J., Jin, H.-W., Panda, D.K.,
Gropp, W., Thakur, R. High
performance MPI-2 one-sided
communication over InfiniBand.
In Proceedings of the IEEE
International Symposium on Cluster
Computing and the Grid (CCGRID’04)
(2004). IEEE Computer Society,
531–538.

	 7.	 Karp, R.M., Sahay, A., Santos, E.E.,
Schauser, K.E. Optimal broadcast
and summation in the LogP
model. In Proceedings of the ACM
Symposium on Parallel Algorithms
and Architectures (SPAA’93)
(1993). ACM, New York, NY, USA,
142–153.

	 8.	 Mellor-Crummey, J.M., Scott, M.L.
Scalable reader-writer
synchronization for shared-memory
multiprocessors. SIGPLAN Notices
26, 7 (1991), 106–113.

	 9.	 Mellor-Crummey, J.M., Scott, M.L.

Synchronization without contention.
SIGPLAN Notices 26, 4 (1991),
269–278.

	10.	 Mirin, A.A., Sawyer, W.B. A scalable
implementation of a finite-volume
dynamical core in the community
atmosphere model. J. High Perform.
Comput. Appl. 19, 3 (2005), 203–212.

	11.	 MPI Forum. MPI: A Message-Passing
Interface Standard. Version 3.0 (2012).

	12.	 Nishtala, R., Hargrove, P.H.,
Bonachea, D.O., Yelick, K.A. Scaling
communication-intensive applications
on BlueGene/P using one-sided
communication and overlap. In
Proceedings of the IEEE International
Parallel and Distributed Processing
Symposium (IPDPS’09) (2009). IEEE
Computer Society, 1–12.

	13.	 Potluri, S., Lai, P., Tomko, K., Sur, S.,
Cui, Y., Tatineni, M., Schulz, K.W.,
Barth, W.L., Majumdar, A., Panda, D.K.
Quantifying performance benefits
of overlap using MPI-2 in a seismic
modeling application. In Proceedings
of the ACM International Conference
on Supercomputing (ICS’10) (2010).
ACM 17–25.

	14.	 Santhanaraman, G., Balaji, P.,
Gopalakrishnan, K., Thakur, R., Gropp,
W., Panda, D.K. Natively supporting
true one-sided communication in
MPI on multi-core systems with
InfiniBand. In Proceedings of the
IEEE/ACM International Symposium
on Cluster Computing and the Grid
(CCGRID ‘09) (2009). 380–387.

	15.	 Shan, H., Austin, B., Wright, N.,
Strohmaier, E., Shalf, J., Yelick, K.
Accelerating applications at scale
using one-sided communication.
In Proceedings of the Conference
on Partitioned Global Address Space
Programming Models (PGAS’12)
(2012).

	16.	 Woodacre, M., Robb, D., Roe, D.,
Feind, K. The SGI Altix TM 3000
Global Shared-Memory Architecture
(2003). SGI HPC White Papers.

	17.	 Zhang, J., Behzad, B., Snir, M.
Optimizing the Barnes-Hut algorithm
in UPC. In Proceedings of the
International Conference for High
Performance Computing, Networking,
Storage and Analysis (SC’11) (2011).
ACM, 75:1–75:11.

	18.	 Zhao, X., Santhanaraman, G.,
Gropp, W. Adaptive strategy for
one-sided communication in MPICH2.
In Recent Advances in the Message
Passing Interface (EuroMPI’12)
(2012). Springer, 16–26.

© 2018 ACM 0001-0782/18/10 $15.00

Robert Gerstenberger, Maciej Besta,
and Torsten Hoefler ({robertge, maciej.
besta, htor}@inf.ethz.ch) ETH Zurich,
Switzerland.

The intricacies of MPI-2.2 RMA implementations over
InfiniBand networks have been discussed by Jian et al.6 and
Santhanaraman et al.14 Zhao et al.18 describe an adaptive strat-
egy to switch from eager to lazy modes in active target synchro-
nizations in MPICH 2. This mode could be used to speed up
these of foMPI’s atomics that are not supported in hardware.

The applicability of MPI-2.2 RMA has also been demon-
strated for some applications. Mirin and Sawyer10 discuss
the usage of MPI-2.2 RMA coupled with threading to improve
the Community Atmosphere Model (CAM). Potluri et al.13
show that MPI-2.2 RMA with overlap can improve the com-
munication in a Seismic Modeling application. However, we
demonstrated new MPI-3 features, such as lock-all epochs,
flushes, and allocated windows, which can be used to further
improve performance by utilizing state-of-the-art RDMA fea-
tures and simplify implementations.

6. DISCUSSION AND CONCLUSION
In this work, we demonstrate how the MPI-3 RMA library
interface can be implemented over RDMA networks to
achieve highest performance and lowest memory over-
heads. We provide detailed performance models that help
choosing among the multiple options. For example, a user
can decide whether to use Fence or PSCW synchronization (if
Pfence > Ppost + Pcomplete + Pstart + Pwait, which is true for large k).
This is just one example for the possible uses of the provided
detailed performance models.

We study all overheads in detail and provide performance
evaluations for all critical RMA functions. Our implemen-
tation proved to be scalable and robust while running on
524,288 processes on Blue Waters speeding up a full appli-
cation run by 13.8% and a 3D FFT on 65,536 processes by a
factor of two. These gains will directly translate to signifi-
cant energy savings in big data and HPC computations.

We expect that the principles and scalable synchroniza-
tion algorithms developed in this work will act as a blueprint
for optimized RMA implementations over future large-scale
RDMA networks. We also conjecture that the demonstra-
tion of highest performance to users will quickly increase
the number of RMA programs. Finally, as the presented
techniques can be applied to data-centric codes, we expect
that RMA programming will also accelerate emerging data
center computations.

Acknowledgments
We thank Timo Schneider for early help in the project,
Greg Bauer and Bill Kramer for support with Blue Waters,
Cray’s Duncan Roweth, and Roberto Ansaloni for help with
Cray’s PGAS environment, Nick Wright for the UPC ver-
sion of MILC, and Paul Hargrove for the UPC version of
NASFT. This work was supported in part by the DOE Office
of Science, Advanced Scientific Computing Research,
under award number DE-FC02-10ER26011, program man-
ager Lucy Nowell. This work is partially supported by the
Blue Waters sustained-petascale computing project, which
is supported by the National Science Foundation (award
number OCI 07-25070) and the state of Illinois. MB is sup-
ported by the 2013 Google European Doctoral Fellowship
in Parallel Computing.�

