
Learning Combinatorial Node Labeling Algorithms
Lukas Gianinazzi

1,2
* , Maximilian Fries

1
*, Nikoli Dryden

1
,

Tal Ben-Nun
1
, Maciej Besta

1
, Torsten Hoefler

1

1
Department of Computer Science

ETH Zurich

ABSTRACT
We present a novel neural architecture to solve graph optimiza-

tion problems where the solution consists of arbitrary node labels,

allowing us to solve hard problems like graph coloring. We train

our model using reinforcement learning, specifically policy gradi-

ents, which gives us both a greedy and a probabilistic policy. Our

architecture builds on a graph attention network and uses several

inductive biases to improve solution quality. Our learned deter-

ministic heuristics for graph coloring give better solutions than

classical degree-based greedy heuristics and only take seconds to

apply to graphs with tens of thousands of vertices. Moreover, our

probabilistic policies outperform all greedy state-of-the-art coloring

baselines and a machine learning baseline. Finally, we show that

our approach also generalizes to other problems by evaluating it on

minimum vertex cover and outperforming two greedy heuristics.

1 INTRODUCTION
Combinatorial optimization problems on graphs, such as graph

coloring and minimum vertex cover, are the subject of numerous

works in academia and industry. Graph coloring (GC) has many real-

world applications, including scheduling problems [42, 44], register

allocation [12, 48], and mobile network autoconfiguration [5]. Min-

imum vertex cover (MVC) is a well-studied problem in algorithmic

graph theory [8, 21, 45] with applications including text summa-

rization [52] and computational biology [2]. For these problems,

the common goal is to assign labels to nodes subject to combinato-
rial feasibility constraints and costs. Therefore, we can generalize

these problems into a single problem we call combinatorial node
labeling, which includes many other problems such as traveling

salesman [15, 20], maximum cut [32], and list coloring [28].

As combinatorial node labeling is NP-hard [20, 32], many ma-

chine learning approaches have been proposed to solve special

cases. A learning scheme faces two fundamental challenges when

compared to classical heuristics: (1) it should match or outperform

heuristics in quality of solution and performance; and (2) it should

generalize across graphs of different sizes. Recent work addressed

these challenges for the traveling salesman problem [7, 11, 17, 39],

influence maximization [41], and minimum vertex cover [14, 38].

For graph coloring, Lemos et al. [37] introduce an estimator for the

chromatic number 𝜒 (𝐺) of a graph, but do not construct a color-

ing and can over- or underestimate 𝜒 (𝐺) (i.e., there may not be a

feasible solution with the estimated number of colors).

Existing machine learning methods do not easily generalize to

cases where the number of labels is not known in advance, such as

graph coloring. To address this limitation, we use policy gradient
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Attention Weights Change

Figure 1: Spatial locality of the decoding. After labeling a
node, only its neighbors’ attention weights change. The ex-
ample shows how a graph is 2-colored using the vertex order
𝑐, 𝑒, 𝑏, 𝑎, 𝑑 . The nodes whose attention weights change have
a box around them. For example, when the first node 𝑐 is
colored, only its neighbors 𝑏 and 𝑒 receive new attention
weights. The figure omits the last step (where 𝑑 is colored).

reinforcement learning [35, 49] to learn a node ordering and com-

bine this with a simple label rule to label each node according to

the ordering. We show that for the chosen label rules, there still

exists an order that guarantees an optimal solution. Our model

uses a graph neural network (GNN) encoder [54] and an attention-

based [36] decoder to assign weights for which node to label next.

These weights can either be used greedily or interpreted as proba-

bilities. Our decoder incorporates a temporal locality inductive bias,

where the selection of a node is conditioned only on the previously

labeled node and a global graph context. Further, we also intro-

duce a spatial locality inductive bias, whereby labeling a node only

impacts the weights of its neighbors. See Figure 1 for an illustration.

We present the combinatorial node labeling framework and eval-

uate it on the graph coloring and minimum vertex cut problems.

We introduce a generic GNN architecture that demonstrates signifi-

cantly improved results for neural graph coloring and outperforms

two state-of-the-art greedy heuristics for minimum vertex cover. A

qualitative analysis of the learned heuristics reveals their capability

to adapt depending on the properties of the test graph. Our abla-

tion studies show that the introduced temporal and spatial biases

improve test scores.

1.1 Related Work
Supervised learning Recent approaches like Joshi et al. [29] and

Manchanda et al. [41] obtain good results for influence maximiza-

tion (IM) and the traveling salesman problem (TSP), respectively.

Both approaches use supervised learning. Supervised learning is

more sample efficient than reinforcement learning and can lead to

overall better results. The fundamental downside is that it is not

applicable to every problem. First, it can be difficult to formulate a

problem in a supervised manner, since it might have many optimal
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solutions (e.g., GC). Second, even if the problem admits a direct su-

pervised formulation, we still need labeled data for training, which

can be hard to generate and relies on an existing solver. For IM,

the approach of Manchanda et al. [41] shows promising results

on graphs much larger than those seen in training. For TSP, the

approach of Joshi et al. [29] is very efficient but does not general-

ize well to graphs larger than those seen in training. Li et al. [38]

also use supervised learning and produce good results on mini-

mum vertex cover (MVC), maximum independent set, and maximal

clique.

Reinforcement learning Dai et al. [14] provide a general

framework for learning problems like MVC and TSP that is trained

with reinforcement learning. It shows good results across differ-

ent graph sizes for the covered problems, but is not fast enough

to replace existing approaches. Kool et al. [35] focus on routing

problems like TSP and the vehicle routing problem. They outper-

form Dai et al. on TSP instances of the training size. Unfortunately,

their approach does not seem to generalize to graph sizes that are

very different from those used for training. Several other reinforce-

ment learning approaches have been proposed and evaluated for

TSP [7, 11, 17, 39]. Barrett et al. [6] consider the maximum cut

(MaxCut) problem. Huang et al. [26] present a Monte Carlo search

tree approach specialized only for graph coloring.

These methods do not address the general node labeling frame-

work, but instead model the solution as a permutation of vertices

(e.g., TSP, vehicle routing) or a set of nodes or edges (e.g., MVC,

MaxCut).

2 COMBINATORIAL NODE LABELING
We introduce combinatorial node labeling, which generalizes many

important hard graph optimization problems, including graph col-

oring (see Appendix D for a list).

We consider an undirected, unweighted, and simple graph 𝐺 =

(𝑉 , 𝐸) with 𝑛 nodes in𝑉 and𝑚 edges in 𝐸. We denote the neighbors

of a node 𝑣 by 𝑁 (𝑣). We assume w.l.o.g. that the graph is connected

and hence𝑚 = Ω(𝑛).
A node labeling is a mapping 𝑐 : 𝑉 → {0, . . . , 𝑛}. A partial node

labeling is a mapping 𝑐 ′ : 𝑉 ′ → {0, . . . , 𝑛} for any subset of nodes

𝑉 ′ ⊆ 𝑉 . A node labeling problem is subject to a feasibility condition

and a real-valued cost function 𝑓 . The cost function maps a node

labeling 𝑐 to a real-valued cost 𝑓 (𝑐). We require that the feasibility

condition is expressed in terms of an efficient (polynomial-time com-

putable) extensibility test 𝑇 : P(𝑉 × {0, . . . , 𝑛}) ×𝑉 × {0, . . . , 𝑛} →
{0, 1}, where P denotes the powerset. We say the extensibility test

passes when it returns 1.

Intuitively, given a partial node labeling 𝑐 ′ : 𝑉 ′ → {0, . . . , 𝑛}, a
node 𝑣 ∉ 𝑉 ′, and label ℓ , the extensibility test passes if and only

if the partial node labeling 𝑐 ′ can be extended by labeling node 𝑣

with ℓ such that the partial node labeling can be extended into a

node labeling. Formally, the extensibility test characterizes the set

of feasible solutions:

Definition 2.1. A node labeling 𝑐 is feasible if and only if there

exists a sequence of node-label pairs (𝑣1, ℓ1), . . . , (𝑣𝑛, ℓ𝑛) such that

for all 𝑖 ≥ 0 the extensibility test 𝑇 satisfies

𝑇 ({(𝑣1, ℓ1), . . . , (𝑣𝑖 , ℓ𝑖 )}, 𝑣𝑖+1, ℓ𝑖+1) = 1 .

The goal of the node labeling problem is tominimize the value of
the cost function among the feasible node labelings. For consistency,

an infeasible node labeling has infinite cost.

Next, we present the two node labeling problems on which we

focus in our evaluation.

2.1 Graph coloring (GC)
Definition 2.2. A 𝑘-coloring of a graph 𝐺 = (𝑉 , 𝐸) is a node

labeling 𝑐 : 𝑉 → {1, 2, . . . , 𝑘} such that no two neighbors have the

same label, i.e., ∀{𝑢, 𝑣} ∈ 𝐸 : 𝑐 (𝑢) ≠ 𝑐 (𝑣) .

The cost function for GC is the number of distinct labels (or

colors) 𝑘 . Given a partial node labeling 𝑐 ′ : 𝑉 ′ → {1, . . . , 𝑘} and
any vertex-label pair (𝑣, ℓ), the extensibility test passes for (𝑐 ′, 𝑣, ℓ)
if and only if the extended partial node labeling 𝑐 ′ ∪ (𝑣, ℓ) is a 𝑘- or
(𝑘 + 1)-coloring of the induced subgraph𝐺 [𝑉 ′ ∪ {𝑣}]. In particular,

the test does not pass when ℓ > 𝑘 + 1. The smallest 𝑘 for which

there is a 𝑘-coloring of 𝐺 is the chromatic number 𝜒 (𝐺) of 𝐺 .

2.2 Minimum vertex cover (MVC)
Definition 2.3. A vertex cover of a graph 𝐺 = (𝑉 , 𝐸) is a node

labeling 𝑐 : 𝑉 → {0, 1} such that every edge is incident to at least

one node with label 1, i.e., ∀{𝑢, 𝑣} ∈ 𝐸 : 𝑐 (𝑢) = 1 ∨ 𝑐 (𝑣) = 1.

The cost function for MVC is the number of nodes with label 1.

Given a partial node labeling 𝑐 ′ : 𝑉 ′ → {0, 1} the extensibility test

passes for (𝑐 ′, 𝑣, ℓ) if and only if the extended partial node labeling

𝑐 ′ ∪ (𝑣, ℓ) is a vertex cover of the induced subgraph 𝐺 [𝑉 ′ ∪ {𝑣}].

3 NODE LABELING POLICIES
Next, we show how every node labeling problem can be formulated

as a (finite) Markov decision process (MDP), during which nodes are

successively added to a partial node labeling until a termination cri-

terion is met. Then, we discuss how to learn a parameterized policy

for this problem. In Section 4, we will present a GNN architecture

for parameterizing a policy for such MDPs.

3.1 Node labeling as a Markov Decision Process
We embed the cost function 𝑓 and the extensibility test into the

MDP. Note that we do not require a way to measure the cost of

partial node labelings. We formulate the state space, action space,

transition function, and reward:

State space A state 𝑆 represents a partial node labeling. It is a set

of pairs 𝑆 = 𝑉 ′ × L for a subset of nodes 𝑉 ′ ⊆ 𝑉 and a subset of

labels L ⊆ {0, . . . 𝑛}. A state is terminal if𝑉 ′ = 𝑉 . Hence, the set of

states is the powerset P(𝑉 × {0, . . . , 𝑛}) of the Cartesian product

of the vertices and labels.

Action space In state 𝑆 , the set of legal actions are the pairs (𝑣, ℓ)
for nodes 𝑣 and labels ℓ which pass the extensibility test of the

problem for the partial node labeling given by 𝑆 (i.e., 𝑇 (𝑆, 𝑣, 𝑙) = 1).

Transition function In our case, the transition function T is

deterministic. That is, given the current state 𝑆𝑡 and an action (𝑣, ℓ),
T (𝑆𝑡 , (𝑣, ℓ)) yields the next state 𝑆𝑡+1 = 𝑆𝑡 ∪ {(𝑣, ℓ)}.
Reward For a terminal state 𝑆 representing the node labelling 𝑐 ,

the reward is −𝑓 (𝑐). For all other states, the reward is 0.



Note that since our tasks are episodic, the return equals the sum

of the rewards (specifically the reward received in the terminal

state). In particular, we do not use discounting.

In Appendix C.1, we prove that the terminal states of this MDP

correspond to the feasible solutions:

Lemma 3.1. For any node labeling problem, there is an MDP whose
terminal states correspond to the feasible solutions with a cost equal
to the negative return.

In the vast majority of reinforcement learning approaches to

solve combinatorial graph optimization problems [14, 17, 35, 39], a

state 𝑆 corresponds to a set or sequence of nodes that are already

added to a solution set. Instead, in our setting the state represents a

partial node labeling. This means that in addition to problems like

MVC and TSP, we can also model problems with more than two

labels (even when the number of labels is not known in advance).

Graph coloring is such a problem.

A policy is a mapping from states to probabilities for each action.

Note that we can turn a probabilistic policy into a deterministic

greedy policy by choosing the action with largest probability. Next,

we present how to train this policy end-to-end using policy gradi-

ents.

3.2 Policy optimization
We train a parameterized node labeling model by policy gradients,

specifically Reinforce [7] with a greedy rollout baseline [35]. At a

high level, the algorithm works as follows. We begin by initializing

two models, the current model and the baseline model. For each

graph in the batch, the algorithm performs a probabilistic rollout

of the policy. The baseline model performs a greedy rollout. The

difference between the two costs determines the policy gradient

update. After every epoch, we perform a (one-sided) paired 𝑡-test

over the cost on a challenge dataset to check if the baseline model

should be replaced with the current model. See Appendix A.2 for

more details.

4 GRAPH LEARNING ARCHITECTURE
Next, we present a graph learning approach to parameterizing poli-

cies for node labeling in ourMDP framework. OurMDP formulation

is modeled after greedy node labeling algorithms. A greedy node

labeling algorithm assigns a label in {0, . . . , 𝑛} to one node after

another based on a problem-specific heuristic. Hence, it can be seen

as providing (1) an order on the nodes and (2) a rule to label the

next selected node.

We focus on learning an order on the nodes and pick a label that

passes the extensibility test according to a fixed rule. The following

two lemmas show there exists a simple label rule that ensures the
optimal solution can be found for GC and MVC (see Appendix C.2

for the proofs):

Lemma 4.1. For every graph 𝐺 , there exists an ordering of vertices
for which choosing the smallest color that passes the extensibility test
colors 𝐺 optimally.

Lemma 4.2. For every graph 𝐺 , there exists an ordering of vertices
for which choosing the label 1 until every vertex in 𝐺 is adjacent to a
node with label 1 produces a minimum vertex cover of 𝐺 .

Encoder Decoder Label rule

State

Policy

action

Figure 2: High-level architecture. The encoder (a GNN) reads
the input graph and produces embeddings for each node.
The decoder takes these embeddings, together with the cur-
rent state 𝑉 ′ × L and the last taken action, and outputs
the next node. The node 𝑣 feeds into the label rule, which
produces the next action (𝑣, ℓ), leading to the next state
(𝑉 ′ × L) ∪ {(𝑣, ℓ)}. This process repeats until reaching a ter-
minal state (when all nodes are labelled).

We expect similar results can be obtained for most other node

labeling problems.

A common strategy in many successful heuristics is to choose

the order of the nodes based on their neighborhoods: The ListRight

heuristic for MVC [16] assigns a node to the vertex cover based

on the assignment of its neighbors. For GC, the DSATUR strategy

selects nodes according to their saturation degree [10]. If a new

node is selected, only the saturation degree of its neighborhood

can change; the others remain unchanged.

Instead of a handcrafted ordering heuristic, we learn to assign

weights to each node and choose the nodes according to their

weights. To compute these weights, we introduce a novel spatial
locality inductive bias inspired by the greedy heuristics: labeling

a node should only affect the weights of its neighbors. As we will

show in Section 5.2, this leads to better test scores compared to the

alternatives of updating all or none of the weights when a node is

labeled.

4.1 Architecture overview
Our architecture consists of an encoder and a decoder to learn a

policy specific the node labeling problem. The encoder learns the

local structural information that is important for the problem in

the form of a node embedding. It is possible to instantiate any GNN

in the encoder.

The context embedding encapsulates information about the graph

itself (enabling the network to adapt its actions to the graph), the last

node that was labeled, and its label. Using only the last node and its

label results in a temporal locality inductive bias. Addingmore nodes

into the context embedding provided no benefit (see Section 5.2).

The decoder uses the node embeddings and the context embed-

ding to select the next node based on attention weights between

the node embeddings and the context embedding. After the decoder

picks the next node 𝑣 , the label rule (see Lemma 4.1 and Lemma 4.2)

assigns the label ℓ for the node. The policy then takes the action

(𝑣, ℓ). Then, the context embedding is updated and the decoder is

invoked again until all nodes are labelled. Figure 2 overviews our

architecture.



4.2 Node features
Each node 𝑣 is associated with an input feature vector 𝑥𝑣 . Our input

features consist of a combination of sine and cosine functions of

the node degree, similarly to positional embeddings [53]. This rep-

resentation ensures that input features are bounded in magnitude

even for larger graphs. We subtract the mean node degree from the

degrees on the synthetic dense graph instances.

4.3 Encoder
We use a hidden dimension of size 𝑑 (unless stated otherwise,

𝑑 = 64). The input features are first linearly transformed and

then fed into a GNN, which produces, for each node 𝑣 , a node

embedding ℎ𝑣 ∈ R𝑑 . We use a three-layer Graph Attention Net-

work (GAT) [36, 53, 54], additive multi-head attention with four

heads, batch normalization [27] with a skip connection [24] at each

encoder layer, and leaky ReLU activations [40].

4.4 Context embedding
Next we describe how to construct the context embedding, which
is an additional input to the decoder. The context embedding is a

function of the output of the encoder and the partial node labeling.

Each label ℓ has a label embedding ℎℓ , which is a max-pooling over

the embeddings of the nodes with the same label ℓ . The graph has a

graph embedding ℎ𝐺 , which is a max-pooling over all node embed-

dings. In the context embedding, we introduce a temporal bias by
only considering the last labeled node (and the graph embedding):

Specifically, we denote the node that is labeled in time step 𝑡 by 𝑣 (𝑡 )

and its label by ℓ (𝑡 ) . Then, the context embedding 𝑔𝑡 concatenates
the following components: (1) The graph embedding ℎ𝐺 , (2) the

embedding ℎ𝑣 (𝑡−1) of the last labeled node 𝑣 (𝑡−1) , and (3) the label

embedding ℎℓ (𝑡−1) of the last labeled node’s label ℓ (𝑡−1) .
In the first iteration we use a learned parameter ℎ (0) for compo-

nents (2) and (3). See Figure 3 for an illustration of how the context

embedding changes between time steps.

4.5 Local decoder
The decoder takes as input the node embeddings generated by the

encoder and the context embedding and outputs the next node to

label. In each time step 𝑡 , an attention mechanism between the con-

text embedding 𝑔𝑡 and each node embedding ℎ𝑣 produces attention

weights 𝑎
(𝑡 )
𝑣 . Here, we introduce a spatial locality bias: labeling a

node can only affect the attention scores of its neighbors in the next

time step. Let 𝑉 ′ be the set of nodes already labelled. The attention

weight 𝑎
(𝑡 )
𝑣 for node 𝑣 in time step 𝑡 is given by the local decoding.

For a node 𝑣 ∉ 𝑉 ′:

𝑎
(𝑡 )
𝑣 =


𝐶 · tanh

(
(Θ1𝑔𝑡 )𝑇 (Θ2ℎ𝑖 )√

𝑑

)
𝑣 ∈ N(𝑣 (𝑡−1) ) or 𝑡 = 0

𝑎
(𝑡−1)
𝑣 𝑣 ∉ N(𝑣 (𝑡−1) )

If 𝑣 ∈ 𝑉 ′, then the attention weight is 𝑎
(𝑡 )
𝑣 = −∞. In the first

iteration of the decoder, we calculate the coefficients for each node

in the graph. As in Bello et al. [7], we clip the attention coefficients

within a constant range [−𝐶,𝐶]. In our experiments we set 𝐶 =

10. The learnable parameter matrices are Θ1 ∈ R𝑑×3𝑑 and Θ2 ∈
R𝑑×𝑑 . We use scaled dot-product attention [53] (instead of additive

a

b

c

e

d

a

b

c

e

d

Figure 3:Temporal locality of the context embedding.The con-
text embedding focuses on the last labeled node. It contains
the graph embedding and the embeddings of the last labeled
node and its label. The example shows two states during
graph coloring at time steps 𝑡 = 3 and 𝑡 = 4. At step 𝑡 = 3,
the node 𝑏 has been colored (blue). The context embedding
𝑔4 contains its embedding ℎ𝑏 and the embedding of 𝑏’s label
max(ℎ𝑏 , ℎ𝑒 ). At step 𝑡 = 4, node 𝑎 is colored (pink). Now, the
context embedding 𝑔5 contains ℎ𝑣 (4) = ℎ𝑎 and the embedding
of 𝑎’s label max(ℎ𝑎, ℎ𝑐 ).

attention) to speed up the decoding. Finally, for each node 𝑣 we

apply a softmax over all attention weights to obtain the probability

𝑝𝑣 that node 𝑣 is labeled next. See Figure 1 for a visualization of the

attention weight computation during decoding.

During inference, our greedy policy selects the vertices with

maximum probability. Our sampling policy (for 𝑘 samples) runs

the greedy policy once, then evaluates the learned probabilistic

policy 𝑘 times (selecting a vertex 𝑣 with the learned probability 𝑝𝑣 ),

returning the best result.

4.6 Number of operations
We express the number of operations (arithmetic operations and

comparisons) of the model during inference parameterized by the

embedding dimension 𝑑 , the number of nodes 𝑛 and the number

of edges𝑚. The encoder uses O(𝑑𝑚 + 𝑑2𝑛) arithmetic operations

and the decoder uses O(𝑑2𝑚) arithmetic operations, resulting in

𝑂 (𝑑𝑚 + 𝑑2𝑛 + 𝑑2𝑚) arithmetic operations, which is linear in the
size of the graph. To select the action of maximum probability (or

sample a vertex), the decoder additionally needs 𝑂 (𝑛2) compari-

son operations (although this could be reduced). As described in

Appendix B.3, in practice the 𝑑2𝑚 term dominates the runtime for

graphs up to 20, 000 vertices and the comparison operations do not

dominate the computation.

5 EXPERIMENTS
We evaluate our approach on established benchmarks for graph

coloring and minimum vertex cover.

Training We use three different synthetic graph distributions

to generate instances for training and validation [3, 19, 55]. We

generate 20,000 graphs for training. The graphs have between 20

and 100 nodes. We use Adam with learning rate 𝛼 = 10
−4

[34]. The

effective batch size is 𝐵 = 320, which comes from using batches of

64 graphs for each node count 𝑛 and accumulating their gradients.

We clip the L2 norm of the gradient to 1, as done in Bello et al. [7].



Table 1: Graph coloring results on the Lemos et al. [37] sub-
set of the COLOR challenge graphs.

Name Cost Wins Optimal

C
l
a
s
s
i
c Largest First 10.65 50% 45%

DSATUR 9.85 65% 50%
Smallest Last 10.8 50% 45%

M
L

Lemos et al. [37] N/A 45% 25%

Ours - Greedy 10.36±0.01 55% 50%
Ours - Sampling 9.65±0.04 70% 50%

We selected these hyperparameters after initial experiments on the

validation set. Each model took 15 − 20 CPU compute node hours

to train on a cluster with Intel Xeon E5-2695 v4, 64 GB memory per

node. We train each model for 200 epochs with five random seeds

and report the standard deviation 𝜎 of cost w.r.t. the random seeds

as ±𝜎 . See Appendix A for more details.

Test Scores In addition to mean cost, we report the ratio of the

solution cost to the optimal solution cost (approximation ratio). For
large graphs, this cannot be computed exactly in a timely manner.

In this case, we use the best solution found by an ILP solver within

a compute time of 1 hour. To compare with baselines which return

infeasible solutions (and hence have ill-defined cost), we report

the percentage of wins (ties for first place count as wins) and the

percentage of instances solved optimally. We refer to these metric

as ‘Wins’ and ‘Optimal’, respectively. We use the model with the

lowest cost to compute these percentages.

5.1 Results
We compare our approach to existing greedy baselines and machine

learning approaches. We focus on other heuristic approaches that

return an approximation in polynomial time.

5.1.1 Graph Coloring. Greedy baselines Largest-First greedily
colors nodes in decreasing order of degree. Smallest-Last [43] colors
the nodes in reverse degeneracy order, which guarantees that when

a node is colored, it will have the smallest possible number of

neighbors that have been already colored. Smallest-Last guantees a

constant number of colors for certain families of graphs, such as

Barabási-Albert graphs [3] and planar graphs [43]. DSATUR [10]

selects vertices based on the largest number of distinct colors in its

neighborhood. DSATUR is exact on certain families of graphs, e.g.,

bipartite graphs [10].

Machine learning baseline We compare our approach with

the chromatic number estimator of Lemos et al. [37]. It does not

guarantee that the solution is feasible, meaning that it can both

under- and overestimate the chromatic number. We use the values

reported by the original paper.

Results on COLOR benchmark We evaluate our results on

the same subset of the COLOR02/03 benchmark [1] as Lemos et al.

[37], consisting of 20 instances of size between 25 and 561 vertices.

See Table 1 for the results.

Our greedy policy outperforms both Largest-First and Smallest-

Last and is tied with DSATUR for the most graphs solved optimally.

When sampling (100 samples) is used to evaluate the policy, our
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(c) Barabási-Albert graph.

Figure 4: Example colorings produced by our learned heuris-
tic. Node borders indicate the colors. Numbers on the nodes
indicate the order in which the heuristic labels them.



Table 2: Comparison of MVC approaches on dense ER
graphs with edge-probability 0.15.

Name Cost Approx. Ratio

M
L

Li et al. [38] 212.296 1.0594

S2V-DQN N/A 1.1208

Ours - Greedy 221.52
±1.11

1.0510

Ours - 10 Samples 220.27
±1.20 1.0443

model outperforms all baselines in both mean cost and win per-
centage and is also tied for the most graphs solved optimally. The

approximation ratio is 1.25 and 1.13 for our greedy and sampling

policies, resp.

Qualitative Results Figure 4 presents typical examples of the

learned coloring heuristic on the training distribution graphs. We

can observe that the heuristic generally picks higher degree, cen-

trally located nodes first. However, if several nodes have the same

degree, it favors coloring neighboring nodes subsequently. This

happens in the WS graphs, see Figure 4b. The learned heuristic

can consistently color the WS graphs with 4 colors, which matches

the Smallest-Last heuristic. We conclude that the learned heuristic

captures complex aspects of the graph extending beyond simple

degree-based decisions and considers the graph’s local neighbor-

hood structure.

5.1.2 Minimum Vertex Cover. Greedy baselines MVCApprox it-

eratively picks an edge that does have one of its endpoints labeled

with 1 and labels both endpoints with 1. MVCApprox-Greedy pro-

ceeds similarly, but greedily selects the edge with maximum sum

of the degrees of its endpoints. Both algorithms guarantee a 2-

approximation [46].

Machine learning baselines S2V-DQN is a 𝑄-learning based

approach [14]. We use the values reported in the original paper. Li

et al. [38] present a tree-search based approach trained in a super-

vised way. In contrast to S2V-DQN, it samples multiple solutions,

then verifies if they are feasible. The time to construct a feasible

solution varies depending on the instance. We use the publicly

available code and pretrained model from the authors in our exper-

iments. We run Li et al.’s code until it finds a feasible solution, and

allow it to sample more solutions if it is below the time budget of

30 seconds per graph.

Results on in-distribution graphs We evaluate and compare

our approach for MVC with S2V-DQN [14] and Li et al. [38] on the

same dataset of generated graphs as. Dai et al. [14]. It consists of

16000 graphs from two distributions, Erdős-Rényi (ER) [19] and

Barabási-Albert (BA) [3], of sizes varying from 20 to 600 nodes. We

use the results reported by Dai et al. [14] on their model trained on

40 − 50 nodes, except for the graphs with less than 40 nodes, for

which no data is available for this model. Hence we use their model

trained on 20 − 40 nodes on these smaller graphs. See Table 2 for

the results on ER graphs and Table 3 for the results on BA graphs.

On ER graphs, our model achieves the closest average approxi-

mation ratio, followed by Li et al. [38]. On the BA graphs, our model

is about 2.3% away from optimal. In comparison, the two machine

learning baselines are slightly less than 1% away from optimal.

Table 3: Comparison of MVC approaches on BA graphs with
average degree 4.

Name Cost Approx. Ratio

M
L

Li et al. [38] 131.62 1.0084
S2V-DQN N/A 1.0099

Ours - Greedy 133.78
±0.07

1.0234

Ours - 10 Samples 133.39±0.05 1.0202

Table 4: Comparison of MVC heuristics on the memetracker
graph.

Name Cost Approx. Ratio

C
l
a
s
s
i
c

MVCApprox 666 1.408

MVCApprox-Greedy 578 1.222

M
L

Li et al. [38] 475 1.0042

S2V-DQN
† 474 1.002

Ours - Greedy 484
±2.10

1.0273

†
trained and evaluated on the same graph.

Results on real-world graph We evaluate our approach on

the memetracker graph from Dai et al. [14] which has 960 vertices

and 4,888 edges. Note that the S2V-DQN model is trained on sub-

graphs from the same graph, giving it an advantage over the other

models that have not seen the graph during training. See Table 4 for

the results. Our approach took less than 1 second to find a vertex

cover, whereas Li et al. [38] took 25 minutes to find a solution on

the same machine.

QualitativeResults; Figure 5 shows typical results of our learned
minimum vertex cover heuristics. On the ER graphs, we can see that

the heuristic does not always start with the highest degree node. In

contrast, on the BA graphs, the heuristic has a strong preference to

start with the highest degree node. In contrast to the classic greedy

heuristics (and our learned graph coloring heuristic), the learned

MVC heuristics seldomly pick neighboring nodes subsequently.

5.2 Investigation of locality
5.2.1 Spatial locality. We test the inductive biases we made re-

garding locality of the decoder. First, we compare against a variant

of the decoder that never updates the attention weights (called static
decoding) and a decoder that always updates all of the attention

weights (called global decoding).
Static Decoding never recomputes the attention weights. For

node a node 𝑖 that is not yet labeled, its weight is:

𝑎𝑖 = 𝐶 · tanh
(
(Θ1g0)𝑇 (Θ2ℎ𝑖 )√

𝑑

)
Static decoding uses 𝑂 (𝑑2𝑛 +𝑚 + 𝑛2) operations, which are fewer

than those of local update decoding when𝑚 ≫ 𝑑2𝑛. With static de-

coding, the model is essentially a GNN with a special node-readout

function.



0

1

2

34

5

6

7

8

9

10

11

12

13

14

(a) Erdős-Rényi graph.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(b) Barabási-Albert graph.

Figure 5: Examples of covers produced by our learnedheuris-
tic: nodeswith a bold black border are in the cover. The num-
bers indicate the order inwhich nodes are labelled. Note that
as soon as a cover is found, the order of the nodes is irrele-
vant: they are all labeled to be outside the cover.

We train graph coloring models with static decoding. On the

Lemos et al. [37] subset of the COLOR challenge graphs, static

decoding achieves a worse mean cost of 10.74±0.12 when using the

greedy policy.

Global Decoding recomputes the attention weights in each time

step 𝑡 . For a node 𝑖 that is not yet labeled, its weight is:

𝑎
(𝑡 )
𝑖

= 𝐶 · tanh
(
(Θ1gt)𝑇 (Θ2ℎ𝑖 )√

𝑑

)
Global decoding uses O(𝑑2𝑛2) operations, which is at least a 𝑑2

factor more than local update decoding for not too dense graphs

(𝑚 ≪ 𝑛2/𝑑2). When there are only two labels (as for MVC), global

decoding is very similar to the Kool et al. [35] model. The difference

to Kool et al. [35] is that they use additional attention layer to

compute a new context embedding from 𝑔𝑡 . Then, in each decoding

step, they apply an attention mechanism between the context node

and all the nodes that are not yet taken.

Global decoding also achieves a worse mean cost of 10.71±0.05

(greedy policy) on the Lemos et al. [37] graph coloring test set.

5.2.2 Temporal locality. We varied the size of the context embed-

ding (i.e., the number of nodes and their labels that contribute to

it). Increasing the context size does not significantly improve the

test score on graph coloring. For graph coloring, a context of size

two and three results in a mean cost of 10.49±0.12 and 10.42±0.12,
respectively, for the greedy policy.

6 CONCLUSION
We presented a unifying framework for learning efficient heuris-

tics to node labeling problems. Since such problems underly many

practical applications, providing a comprehensive framework for

them broadens the reach and benefits of machine learning. This

work contributes to the goal of replacing hand-crafted heuristics

with learned heuristics tailored to the problems at hand. We demon-

strated excellent results on graph coloring and minimum vertex

cover as example problems. Future work could include generaliz-

ing the architecture to handle weighted graphs and edge labeling

problems. In contrast to previous work, our work extends beyond

tasks that are simpler to formulate, like minimum vertex cover, to

more challenging problems like graph coloring. Formulating a new

learning problem in our framework requires a cost function, a la-

beling rule, and an extensibility test. Our architecture benefits from

two inductive biases: a spatial and a temporal bias. These biases

allow our model to have nearly-linear operation number scaling

and outperform several baselines.
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Table 5: The graph parameters for training and validation.

BA ER S-ER WS

𝛿 = 4 𝑝 = 0.15 𝑝 = 𝑝𝑠−𝑒𝑟 𝑘 = 5,

𝑞 = 0.1

A TRAINING
A.1 Data Generation
We use four different synthetic graph distributions to generate instances for training and validation. All graphs are generated via the Python

Networkx library [22].

Barabási-Albert Model [3] The Barabási-Albert (BA) Model generates random scale-free networks. Similar to real-world networks BA

graphs grow by preferential attachment, i.e., a new node is more likely to link to more connected nodes. The model is parameterized by one

parameter 𝛿 , which dictates the average degree.

Erdős-Rényi Model [19] An Erdős-Rényi (ER) graph 𝐺 (𝑛, 𝑝) has 𝑛 nodes and each edge exists independently with probability 𝑝 . The

expected number of edges is

(𝑛
2

)
𝑝 .

Watts-Strogatz Model [55] Watts-Strogatz (WS) graphs were developed to overcome the shortcomings of ER graphs when modeling real

world graphs. In real networks we see the formation of local clusters, i.e., the neighbors of a node are more likely to be neighbors. For

parameters 𝑘 and 𝑞, a WS graph is built as follows: build a ring of 𝑛 nodes. Next, connect each node to its 𝑘 nearest neighbors. Finally, replace

each edge {𝑢, 𝑣} by a new edge {𝑢,𝑤} (chosen uniformly at random) with probability 𝑞.

A.1.1 Training set parameters. See Table 5 for the parameters of the graph distributions used during training. Note that for BA and ER

graphs, the parameters match those used in the Dai et al. [14] test set (see Table 2 and Table 3). We also consider sparse ER graphs (S-ER), for

we set the edge probability such that graphs have expected average degree close to Δ = 7.5 when 𝑛 is small but remain connected with high

probability when 𝑛 is large. This means that

𝑝𝑠−𝑒𝑟 = min

(
1,max

(
Δ

𝑛
, (1 + 𝜖) ln𝑛

𝑛

))
, (1)

for a small 𝜖 , which we set to 0.2 in our experiments. The formula is derived from the connectivity threshold of ER graphs [18].

For graph coloring, we train on a hybrid dataset consisting of an equal proportion of BA, S-ER, and WS graphs. For minimum vertex cut,

we train on a dataset consisting of BA graphs, a dataset consisting of ER graphs, and a hybrid dataset consisting on a combination of the two

(in equal proportion). We use the in-distribution models for the evaluation on the synthetic test instances and the hybrid model for the

memetracker graph. During training, we use an equal proportion of graphs with 𝑛 ∈ {20, 40, 50, 70, 100} nodes.

A.2 Policy Optimization
We train our model with Reinforce with a greedy rollout baseline Kool et al. [35]. The details follow. We denote the cost of labeling the

graph 𝐺𝑖 in the order given by the sequence of nodes 𝜋 by L(𝜋,𝐺𝑖 ). A model 𝑀 is parameterized by parameters 𝜃 . On a graph 𝐺𝑖 , the

model returns a sequence of nodes 𝜋 and an associated probability 𝑝𝜃 . The probability 𝑝𝜃 is the product of all action probabilities that led to

the sequence of nodes 𝜋 . We write 𝑝𝜃 , 𝜋 ← 𝑀𝜃 (𝐺𝑖 ) when the policy is evaluated deterministically and 𝑝𝜃 , 𝜋 ∼ 𝑀𝜃 (𝐺𝑖 ) when the policy is

evaluated probabilistically.

The complete training procedure is given in Algorithm 1. Note that Algorithm 1 follows from the textbook Reinforce with a baseline [49]

by factoring the probability of reaching a terminal state and using that the rewards are 0 in our MDP except when reaching a terminal state.

Unlike Kool et al. [35], we do not use warmup epochs where an exponential moving average baseline is used in the first epochs of training.

B ADDITIONAL RESULTS
B.1 Results by graph size
Our test and validation data already include graphs larger than those seen in training. In the main paper (Tables 1-3), we report the average

across the graph sizes. See Table 6 for a breakdown of Table 2, where we show how the approximation ratio varies with the test instance size

on minimum vertex cover (MVC). For graph coloring (GC), about a third of the test instances have more vertices than seen in training. The

average approximation ratio on those instances is 1.18 and 1.14 for the Greedy and the Sampling policies, respectively. This is comparable to

the results on the overall test set (1.25 and 1.13 for the Greedy and the Sample policy, respectively).

B.2 Validation Results
We compare the cost of the learned heuristic for different parameters of the training. The validation set consists of 600 graphs with 𝑛 nodes

for 𝑛 ∈ {20, 50, 100, 200, 400, 600}.



Algorithm 1 Policy Training with Reinforce + Baseline.

Input: number of epochs 𝐸, batch size 𝐵, dataset 𝐷train, earing rate 𝛼

Initialize model𝑀𝜃 and baseline model𝑀𝐵𝐿
𝜃

𝐷
challenge

← Sample new challenge dataset
for epoch = 1, . . . , 𝐸 do

for batch in 𝐷𝑡𝑟𝑎𝑖𝑛 do
[ 𝑝𝜃,𝑖 , 𝜋𝑖 ∼ 𝑀𝜃 (𝐺𝑖 ) for 𝐺𝑖 in batch ] // Sample from policy

[ 𝑝𝐵𝐿
𝜃,𝑖

, 𝜋𝐵𝐿
𝑖
← 𝑀𝜃𝐵𝐿 (𝐺𝑖 ) for 𝐺𝑖 in batch ] // Greedy baseline

∇𝜃 𝐽 (𝜃 ) = 1

𝐵

∑𝐵
𝑖=1 (L(𝜋𝑖 | 𝐺𝑖 ) − L(𝜋𝐵𝐿𝑖 | 𝐺𝑖 )) ∇𝜃 log(𝑝𝜃,𝑖 ) // Policy gradient

𝜃 ← Gradient Descent(𝜃,∇𝜃 𝐽 (𝜃 ), 𝛼)
end for

//Challenge the baseline

if OneSidedPairedTTest(𝑀𝜃 ,𝑀
𝐵𝐿
𝜃

, 𝐷
challenge

) < 0.05 then
𝜃𝐵𝐿 ← 𝜃

𝐷
challenge

← Sample new challenge dataset
end if

end for

Table 6: Cost and approximation ratio of our approach for MVC on ER graphs (10 samples) from Table 2 by instance size.

Vertices 15-20 40-100 100-300 300-500 500-600

Cost 8 43.8 178.4 384.9 540

Appr. Ratio 1.012 1.042 1.048 1.055 1.054

Table 7: Validation Cost for GC.

Training Distr. Cost S-ER Cost WS Cost BA

S-ER+WS+BA 5.32
±0.05

4.01
±0.00

5.50
±0.04

Table 8: Validation Cost for MVC.

Training Distribution Cost ER Cost BA

ER 223.56±0.11 218.07
±4.36

BA 223.76
±0.43 199.44±12.02

ER+BA 223.98
±0.26

208.18
±6.24

B.2.1 Graph coloring. Table 7 shows the validation cost on the three training distribution for the configuration used in the experiments.

Over all three distributions, the mean validation cost is 4.95±0.02.
Number of attention heads We varied the number of attention heads (among 1, 2, 4) while keeping the dimension per head to 16. For

graph coloring, this results in a mean validation cost of 5.29±0.02, 4.98±0.01, and 4.95±0.02, respectively. Hence, 4 attention heads (overall

hidden dimension 64) yields the lowest mean validation cost for graph coloring.

Learning rate With a larger learning rate of 𝛼 = 10
−3
, the mean validation cost for graph coloring is significantly worse, namely

5.22±0.002. A smaller learning rate of 𝛼 = 10
−5

leads to a mean validation cost of 5.02±0.001, which is slightly worse than the cost for 𝛼 = 10
−4
.

B.2.2 Minimum vertex cover. Table 8 shows the validation results for training on either only one distribution and evaluating on ER and BA

graphs. Training on a mixture ER and BA graphs leads to worse validation cost on BA graphs compared to training only on BA graphs.

Training on ER graphs exclusively without BA graphs leads to a slight cost improvement on ER graphs.
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Figure 6: Runtime scaling of graph coloring inference on ER graphs for local and global decoding.

B.3 Runtime Scalability
Figure 6 shows how the runtime of our graph coloring model scales with the size of the graph on S-ER graphs with the edge probability

𝑝 as in validation according to Equation (1). Each datapoint is the mean of 10 samples. We can see that while our model with the local

decoding has nearly linear runtime scaling, the global decoding (from Section 5.2.1) does not scale well to graphs with more than 10,000

nodes. In particular, it takes less than 1 second to color ER graphs with 1,280 vertices (> 5,000 edges) and less than 22.1 seconds to color

graphs with 20,480 vertices (> 100,000 edges). If the local decoding is replaced with globally updating the attention weights, the runtime

increases significantly to more than 154 seconds to color the same graphs with 20,480 vertices.

Similar results hold for MVC: it takes less than 1 second to compute a vertex cover for a graph with 1,000 vertices and less than 40 seconds

to compute a vertex cover for a graph with 20,480 vertices (> 100,000 edges). With global decoding, it takes 180.9 to compute a vertex cover.

C ADDITIONAL PROOFS
C.1 The node labeling MDP

Proof of Lemma 3.1. Consider a sequence of actions (𝑣1, ℓ1), . . . , (𝑣𝑛, ℓ𝑛) ending in a terminal state. For all 𝑡 , the prefix (𝑣1, ℓ1), . . . , (𝑣𝑡 , ℓ𝑡 )
of this sequence corresponds to a partial node labeling 𝑐 ′ (by viewing the sequence of node-label pairs as describing a function from nodes

to labels). By construction of the MDP, labeling node 𝑣𝑖+1 with ℓ𝑡+1 passes the extensibility test for 𝑐 ′. Hence the node labelling 𝑐 represented
by (𝑣1, ℓ1), . . . , (𝑣𝑛, ℓ𝑛) is feasible. By constriction, the return of the episode is −𝑓 (𝑐), where 𝑓 (𝑐) is the cost of node labeling 𝑐 .

Conversely, consider a feasible solution 𝑐 with cost 𝑓 (𝑐). Then, by definition of feasibility (Section 5.2), there is a sequence (𝑣1, ℓ1),
. . . , (𝑣𝑛, ℓ𝑛) of node-label pairs such that for all 𝑡 ≥ 0 the partial node labeling given by (𝑣1, ℓ1), . . . , (𝑣𝑡 , ℓ𝑡 ) passes the extensibility test for

node 𝑣𝑡+1 and label ℓ𝑡+1. Hence, the sequence of node-label pairs is also a sequence of actions in the MDP leading to a terminal state. The

return for this episode is −𝑓 (𝑐). □

C.2 Optimality of the labeling rule
Proof of Lemma 4.1. Let 𝐺 be some graph with chromatic number 𝜒 (𝐺) = 𝑘 and 𝑐∗ be a mapping that colors 𝐺 optimally.

We partition𝑉 into color classes𝐶𝑖 = {𝑣 | 𝑐∗ (𝑣) = 𝑖} such that all nodes with color 𝑖 are in𝐶𝑖 . Now, we build an ordering by consecutively

taking all nodes from 𝐶1, then all nodes from 𝐶2 and so on. Choosing the smallest color that passes the extensibility test will produce an

optimal coloring for such an order of nodes. This coloring might be different from the one of 𝑐∗. This is, because a node in 𝐶𝑖 might have no

conflicts with some color 𝑗 < 𝑖 and therefore this node will be assigned color 𝑗 . However, by assumption all nodes that have color 𝑗 in 𝑐∗

are already colored and a node from 𝐶𝑖 can have at most 𝑖 − 1 conflicting colors in its neighborhood. Hence, the algorithm will produce a

coloring of at most 𝑘 colors, which we assumed to be optimal. □

Proof of Lemma 4.2. Let 𝑆 be the set over nodes with label 1 in a minimum vertex cover of 𝐺 . Order these nodes first (in an arbitrary

relative order), then order the remaining nodes in 𝑉 − 𝑆 after these nodes (in an arbitrary relative order). Labeling the nodes in this order

produces a minimum vertex cover of 𝐺 . □



Table 9: Node labeling problems which partition the nodes into 2 or more sets.

Problem Extensibility Test 𝑇 (𝑉 ′ × L, 𝑣, 𝑙) Cost function 𝑓

Balanced 𝑘-partition [33] There are no more than ⌈𝑛
𝑘
⌉

nodes with the same label

and at most 𝑘 labels.

∑
{𝑢,𝑣 }∈𝐸,𝑙 (𝑢)≠𝑙 (𝑣) 𝑤 (𝑢, 𝑣)

Balanced (𝑘, 1 + 𝜖)-partition [33] There are no more than ⌈𝑛 (1+𝜖)
𝑘
⌉

nodes with the same label

and at most 𝑘 labels.

∑
{𝑢,𝑣 }∈𝐸,𝑙 (𝑢)≠𝑙 (𝑣) 𝑤 (𝑢, 𝑣)

Minimum 𝑘-cut [30] 𝑘 − |𝑉 | − |𝑉 ′ | − 1 ≤ |L ∪ {𝑣}|
and |L ∪ {𝑣}| ≤ 𝑘

∑
{𝑢,𝑣 }∈𝐸,𝑙 (𝑢)≠𝑙 (𝑣) 𝑤 (𝑢, 𝑣)

Clique cover [32] Every label induces a clique Number of labels

Domatic number [25] Every label induces a

dominating set of 𝐺 [𝑉 ′ ∪ {𝑣}]
Negative number of labels

Graph coloring [28, 32] No neighbor of 𝑣 has label 𝑙 Number of labels

Graph co-coloring [28] The nodes with label 𝑙 induce

an independent set in 𝐺

or the complement of 𝐺

Number of labels

𝑘-defective coloring [13] No node has more than 𝑘

neighbors with label 𝑙

Number of labels

Table 10: Node labeling problems where the labels encode a sequence of nodes.

Problem Extensibility Test 𝑇 (𝑉 ′ × L, 𝑣, 𝑙) Cost function 𝑓

Traveling salesman problem [15] 𝑙 = max(L) + 1 and
𝑣 is a neighbor of the node in L
with label max(L)

∑
(𝑢,𝑣) ∈𝐸,𝑙 (𝑣)=𝑙 (𝑢)+1𝑤 (𝑢, 𝑣)

Tree decomposition [9] 𝑙 = max(L) + 1 For a node 𝑣𝑖 with label 𝑖 , add edges

to 𝐺 until 𝑣𝑖 forms a clique with

its higher-labelled neighbors.

The cost is the largest number

of higher-labelled neighbors

in the augmented graph [9].

Longest path [31] 𝑙 = max(L) + 1 Maximum number of nodes with

consecutive labels that induce a path

D LIST OF COMBINATORIAL NODE LABELING PROBLEMS
We provide an extensive list of classic graph optimization problems framed as node labeling problems. Note that there can be multiple

equivalent formulations. For some problems, we consider a weighed graph 𝐺 with weight function𝑤 : 𝐸 ↦→ R+, we write𝑤 (𝑢, 𝑣) the weight
of an edge {𝑢, 𝑣}. For a set of nodes 𝑆 , we denote the subgraph of 𝐺 induced by 𝑆 with 𝐺 [𝑆].

The problems in Table 9 require a partition of the nodes as their solution. These can be represented as node labeling problems by giving

each partition its unique label. For many of the problems, the number of used labels determines the cost function.

The problems in Table 10 require a path (or a sequences of nodes) as their solution, which we represent as node labeling problems by

having the label indicate the position in the path (or sequence).

The problems in Table 11 require a set of nodes as their solution. These can be represented as node labeling problems by giving the nodes

in the solution set the label 1 and the nodes not in the solution set the label 0. The cost function is closely related to the number of nodes

with label 1 for most of these problems.



Table 11: Node labeling problems with binary labels. For all these problems, the extensibility test passes only if the label is 0 or
1 (and the additional requirements listed below are satisfied).

Problem Extensibility Test 𝑇 (𝑉 ′ × L, 𝑣, 𝑙) Cost function 𝑓

Maximum cut [32] At least one node has label 1 −|{{𝑢, 𝑣} ∈ 𝐸, 𝑙 (𝑢) ≠ 𝑙 (𝑣)}|

Sparsest cut [4] At least one node has label 1
| { {𝑢,𝑣 }∈𝐸, 𝑙 (𝑢)≠𝑙 (𝑣) } |
| {𝑣∈𝑉 , 𝑙 (𝑣)=1} |

Maximum independent set [47, 50] The subgraph induced by

the nodes with label 1 is an

independent set

−|{𝑣 ∈ 𝑉 , 𝑙 (𝑣) = 1}|

Minimum vertex cover (node cover) [32] The subgraph induced by

the nodes with label 1 is a

vertex cover of 𝐺 [𝑉 ′ ∪ {𝑣}]

|{𝑣 ∈ 𝑉 , 𝑙 (𝑣) = 1}|

Maximum clique [51] The subgraph induced by

the nodes with label 1 is a

clique

−|{𝑣 ∈ 𝑉 , 𝑙 (𝑣) = 1}|

Minimum feedback node set [32] 𝐺 [{𝑢 ∈ 𝑉 ′ ∪ {𝑣}, 𝑙 (𝑢) = 0}]
is a forest

|{𝑣 ∈ 𝑉 , 𝑙 (𝑣) = 1}|

Metric dimension [23] The nodes in 𝑉 ′ ∪ {𝑣} are
uniquely identified by their

distances to nodes

with label 1

|{𝑣 ∈ 𝑉 , 𝑙 (𝑣) = 1}|

Minimum dominating set [25] The nodes with label 1 form a

dominating set of 𝐺 [𝑉 ′ ∪ {𝑣}]
|{𝑣 ∈ 𝑉 , 𝑙 (𝑣) = 1}|

Minimum connected dominating set [25] The nodes with label 1 form a

connected dominating

set of 𝐺 [𝑉 ′ ∪ {𝑣}]

|{𝑣 ∈ 𝑉 , 𝑙 (𝑣) = 1}|
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