
Fixing Probe for Multi-Threaded MPI Applications
(Revision 2)

Douglas Gregor, Torsten Hoefler, and Andrew Lumsdaine
{dgregor,htor,lums}@osl.iu.edu

August 1, 2008

1 Introduction

MPI’s message-probing operations, MPI Probe and MPI Iprobe, are useful in MPI applications
that do not know a priori what messages they will receive or how much data those messages
will contain. Such applications often have irregular, data-driven communication patterns or
deal with data structures that require serialization for transmission.

Unfortunately, MPI’s message-probing operations are unusable in multi-threaded appli-
cations where they could be most useful. The fundamental problem with MPI Probe and
MPI Iprobe functions is that a message found by a probe can still be matched and received
by a receive operation in a different thread. Thus, despite the fact that a probe operation
returns a source and tag that can be used to receive a message, there is no guarantee that
the message will still be available when that receive operation is invoked. For example, the
following code can not be executed concurrently by two threads in an MPI process, because
a message could be found by the MPI Probe in both threads, while only one of the threads
could successfully receive the message (the other will block):

MPI Status status;
int value;
MPI Probe(MPI ANY SOURCE, /∗tag=∗/0, MPI COMM WORLD, &status);
MPI Recv(&value, 1, MPI INT, status.MPI SOURCE, /∗tag=∗/0, MPI COMM WORLD,
MPI Recv(MPI STATUS IGNORE);

The lack of a usable threaded MPI Probe or MPI Iprobe causes serious problems for the
construction of language bindings for high-level object-oriented and generic languages, where
users would like to be able to transmit objects that require serialization, including C++ [3,4],
Java [1], Python [5], and C# [2]. MPI provides a mechanism to “pack” (serialize) an object
into a buffer that can be transmitted via MPI, then “unpack” (de-serialize) that object at
the receiver’s end. However, while MPI provides good support for serialization and sending
serialized data, it does not provide adequate support for receiving serialized data. The
problem is that, in general, the receiver cannot know the length of the serialized data before
it posts the receive. MPI Probe and MPI Iprobe provide this functionality, but they are

1



unusable in a multi-threaded environment. Thus, bindings for these languages must resort
to elaborate and inefficient workarounds [2].

There is no known workaround that addresses all of the problems with MPI Probe and
MPI Iprobe in multi-threaded MPI applications. Therefore, we propose extensions for MPI
that introduce a new kind of probe—a “matched” probe—and a set of corresponding receive
operations. The new probe matches a message and returns a handle to that specific message,
which cannot be found by any other probe operation or matched by any other receive. The
new receive operations allow the receipt of a message based on the message handle returned
from this probe. These extensions allow the use of probe in a multi-threaded context,
ensuring that the message found by probe is the message received.

In the following example, we illustrate how the new probe operation, MPI Mprobe, can
be used to receive a message of unknown length. Note that this code can be concurrently
executed in several threads, each of which will receive different messages.

MPI Message msg;
MPI Status status;
/∗ Match a message ∗/
MPI Mprobe(MPI ANY SOURCE, MPI ANY TAG, MPI COMM WORLD, &msg, &status);

/∗ Allocate memory to receive the message ∗/
int count;
MPI get count(&status, MPI BYTE, &count);
char∗ buffer = malloc(count);

/∗ Receive this message. ∗/
MPI Mrecv(buffer, count, MPI BYTE, &msg, MPI STATUS IGNORE);

2 Proposed Extensions

2.1 Message handles

A message handle returned by a matching probe (MPI Mprobe or MPI Improbe) has type
MPI Message. A null handle is a handle with value MPI MESSAGE NULL.

int MPI Message cancel(MPI Message ∗message)

MPI MESSAGE CANCEL(MESSAGE, IERROR)
INTEGER MESSAGE, IERROR

void Message::Cancel()

INOUT message the message to be cancelled (Message)

A call to MPI MESSAGE CANCEL cancels the receipt of a message matched by a matching
probe. A cancelled message cannot be received.

2



Advice to implementers. Because no receive buffers have been posted for a receive, cancel-
lation always succeeds even if the underlying interconnect does not permit the cancellation of
transmissions after they have been matched. A valid implementation of MPI Message cancel
that supports such interconnects is:

int count; /∗ set to the size of the message ∗/
char∗ buffer = malloc(count);
MPI Mrecv(buffer, count, MPI BYTE, &msg, MPI STATUS IGNORE);
free(buffer); �

2.2 Matching Probe

The MPI MPROBE and MPI IMPROBE operations allow incoming messages to be queried
without actually receiving them. The user can then decide how to receive them, based on
the information returned by the probe. In particular, the user may allocate memory for the
receive buffer, according to the length of the probed message.

int MPI Improbe(int source, int tag, MPI Comm comm, int ∗flag, MPI Message ∗message,
int MPI Improbe(MPI Status ∗status)

MPI IMPROBE(SOURCE, TAG, COMM, FLAG, MESSAGE, STATUS, IERROR)
LOGICAL FLAG
INTEGER SOURCE, TAG, COMM, MESSAGE, STATUS(MPI STATUS SIZE), IERROR

bool Comm::Improbe(int source, int tag, Message& message) const
bool Comm::Improbe(int source, int tag, Message& message, Status& status) const

IN source source rank or MPI ANY SOURCE (integer)
IN tag tag value or MPI ANY TAG (integer)
IN comm communicator (handle)
OUT flag (logical)
OUT message message handle (Message)
OUT status status object (Status)

MPI IMPROBE(source, tag, comm, flag, message, status) returns flag = true if there is a mes-
sage that can be received and that matches the pattern specified by the arguments source,
tag, and comm. The call matches the same message that would have been received by a call
to MPI RECV(..., source, tag, comm, status) executed at the same point in the program, and
returns in message a handle to that message and in status the same value that would have
been returned by MPI RECV(). Otherwise, the call returns flag = false, and leaves message
undefined.

A matched receive executed with the message handle will receive the message that was
matched by the probe. Unlike MPI IPROBE, no other probe or receive operation may match
the message returned by MPI IMPROBE. Each message returned by MPI IMPROBE must
either be completed with a matched receive or cancelled with MPI MESSAGE CANCEL.

3



The source argument of MPI IMPROBE can be MPI ANY SOURCE, and the tag argument
can be MPI ANY TAG, so that one can probe for messages from an arbitrary source and/or
with an arbitrary tag. However, a specific communication context must be provided with
the comm argument.

int MPI Mprobe(int source, int tag, MPI Comm comm, MPI Message ∗message
int MPI Mprobe(MPI Status ∗status)

MPI MPROBE(SOURCE, TAG, COMM, MESSAGE, STATUS, IERROR)
INTEGER SOURCE, TAG, COMM, MESSAGE, STATUS(MPI STATUS SIZE), IERROR

void Comm::Mprobe(int source, int tag, Message& message) const
void Comm::Mprobe(int source, int tag, Message& message, Status& status) const

IN source source rank or MPI ANY SOURCE (integer)
IN tag tag value or MPI ANY TAG (integer)
IN comm communicator (handle)
OUT message message handle (Message)
OUT status status object (Status)

MPI MPROBE behaves like MPI IMPROBE except that it is a blocking call that returns
only after a matching message has been found.

Advice to users. Unlike the (deprecated) MPI PROBE and MPI IPROBE, MPI MPROBE
and MPI IMPROBE can be safely used in a multi-threaded MPI program. A message returned
by MPI MPROBE or MPI IMPROBE has already been matched, and can only be received with
a matched receive (section 2.3) executed with the corresponding message handle. �

The MPI implementation of MPI MPROBE and MPI IMPROBE needs to guarantee progress:
if a call to MPI MPROBE has been issued by a process, and a send that matches the probe has
been initiated by some process, then the call to MPI MPROBE will return, unless the mes-
sage is matched by a concurrent matching probe operation or received by another concurrent
receive operation (that is executed by another thread at the probing process). Similarly, if a
process busy waits with MPI IMPROBE and a matching message has been issued, then the
call to MPI IMPROBE will eventually return flag = true unless the message is matched by a
concurrent matching probe operation or received by another concurrent receive operation.

Editorial note: the definitions of MPI IPROBE and MPI Probe should remain the same
as they are now, but we deprecate them by adding the following text:

MPI PROBE and MPI IPROBE are deprecated.
Rationale. MPI PROBE and MPI IPROBE find messages, but do not match them, which

makes MPI PROBE and MPI IPROBE unusable in multi-threaded MPI programs. MPI MPROBE
and MPI IMPROBE provide better semantics than MPI PROBE and MPI IPROBE for multi-
threaded MPI programs. �

2.3 Matched receives

Messages that have been matched by a matching probe (section 2.2) can be received by a
matched receive.

4



int MPI Mrecv(void∗ buf, int count, MPI Datatype datatype, MPI Message∗ message,
int MPI Mrecv(MPI Status ∗status)

MPI MRECV(BUF, COUNT, DATATYPE, MESSAGE, STATUS, IERROR)
<type> BUF(∗)
INTEGER COUNT, DATATYPE, MESSAGE, STATUS(MPI STATUS SIZE), IERROR

void Message::Mrecv(void∗ buf, int count, const Datatype& datatype, Status& status)
void Message::Mrecv(void∗ buf, int count, const Datatype& datatype)

OUT buf initial address of receive buffer (choice)
IN count number of elements in receive buffer (integer)
IN datatype datatype of each receive buffer element (handle)
INOUT message message to be received (Message)
OUT status status object (Status)

This call receives a message found by a matching probe operation (section 2.2).
The receive buffer consists of the storage containing count consecutive elements of the

type specified by datatype, starting at address buf. The length of the received message must
be less than or equal to the length of the receive buffer. An overflow error occurs if all
incoming data does not fit, without truncation, into the receive buffer.

If a message that is shorter than the receive buffer arrives, then only those locations
corresponding to the (shorter) message are modified.

On return from this function, the message handle is set to MPI MESSAGE NULL. All
errors that occur during the execution of this operation are handling according to the error
handler set for the communicator used in them matched probe call that produced the message
handle.

Example The following example uses a matching probe and a ready receive to receive
any message of any size. This code can be executed in multiple threads concurrently.

MPI Message message;
MPI Status status;
/∗ Match a message ∗/
MPI Mprobe(MPI ANY SOURCE, MPI ANY TAG, MPI COMM WORLD, &message, &status);

/∗ Allocate memory to receive the message ∗/
int count;
MPI Get count(&status, MPI BYTE, &count);
char∗ buffer = malloc(count);

/∗ Receive this message. ∗/
MPI Mrecv(buffer, count, MPI BYTE, &message, MPI STATUS IGNORE); �

Rationale. MPI MRECV does not have a communicator parameter because the commu-
nicator was part of the matching probe operation. Requiring the communicator to also be
passed into MPI MRECV would involve addition user code and additional error checking in
the MPI implementation, with no clear benefit. �

5



int MPI Imrecv(void∗ buf, int count, MPI Datatype datatype, MPI Message∗ message,
int MPI Imrecv(MPI Request ∗request)

MPI IMRECV(BUF, COUNT, DATATYPE, MESSAGE, REQUEST, IERROR)
<type> BUF(∗)
INTEGER COUNT, DATATYPE, MESSAGE, REQUEST, IERROR

void Message::Imrecv(void∗ buf, int count, const Datatype& datatype, Request& request)

OUT buf initial address of receive buffer (choice)
IN count number of elements in receive buffer (integer)
IN datatype datatype of each receive buffer element (handle)
INOUT message message to be received (Message)
OUT request request object (Status)

Start a ready, non-blocking receive of a message found by a matching probe operation (sec-
tion 2.2). The message handle is set to MPI MESSAGE NULL.

3 Revision History

Revision 2

• Added MPI MESSAGE NULL.

• Clarify that errors in the receive operations are handled according to the communicator
with which the message handle is associated.

Revision 1

• Renamed MPI Rprobe, MPI Irprobe, MPI Rrecv and MPI Irrecv to MPI Mprobe, MPI Improbe,
MPI Mrecv, and MPI Imrecv, respectively.

• Made MPI Message an opaque handle; MPI Mprobe and MPI Improbe now return an
MPI Status result to provide information about the message (source, tag, count). Re-
moved MPI Message get count.

• Corrected numerous small errors in the C++ bindings.

References

[1] Bryan Carpenter, Geoffrey Fox, Sung Hoon Ko, and Sang Lim. Object serialization for
marshalling data in a Java interface to MPI. In JAVA ’99: Proceedings of the ACM 1999
conference on Java Grande, pages 66–71, New York, NY, USA, 1999. ACM Press.

6



[2] Douglas Gregor and Andrew Lumsdaine. Design and implementation of a high-
performance MPI for C# and the common language infrastructure. In Proceedings ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, February
2008. To appear.

[3] Douglas Gregor and Matthias Troyer. Boost.MPI. http://www.generic-programming.
org/∼dgregor/boost.mpi/doc/, November 2006.

[4] Prabhanjan Kambadur, Douglas Gregor, Andrew Lumsdaine, and Amey Dharurkar.
Modernizing the C++ interface to mpi. In Proceedings of the 13th European PVM/MPI
Users’ Group Meeting, LNCS, pages 266–274, Bonn, Germany, September 2006. Springer.

[5] Patrick Miller and Martin Casado. MPI Python. http://sourceforge.net/projects/-
pympi/.

7

http://www.generic-programming.org/~dgregor/boost.mpi/doc/
http://www.generic-programming.org/~dgregor/boost.mpi/doc/

	Introduction
	Proposed Extensions
	Message handles
	Matching Probe
	Matched receives

	Revision History

