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Motivation and Main Theses

 Message Passing (MP) is a useful programming concept

 Reasoning is simple and (often) deterministic

 Message Passing Interface (MPI) is a proven interface definition

 MPI often cited as “assembly language of parallel 

computing”

 Not quite true as MPI offers collective communication

 But: Many relevant patterns are not covered

 e.g., nearest neighbor halo exchange

 Bulk Synchronous Parallelism is a useful 

programming model for MP programs

 Easy to reason about the state of the program

 cf. structured programming vs. goto
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Valiant’s BSP Model

 Envisioned as hardware and software model

 SPMD program execution is split into k supersteps

 All instances are in the same superstep

 Implies synchronization / synchronous execution 

 Messages can be sent and received during superstepi

 Received messages can be accessed in superstepi +1

 Our claim:

 Many algorithm communication patterns are constant or 

exhibit temporal locality

 Should be defined as such!

 Allows various optimizations

 Takes the MPI abstractions to a new (higher) level
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Classification of Communication Patterns

 We classify applications (or algorithms) into five main 

classes of communication patterns

1. Compile-time static

2. Run-time static

3. Run-time flexible

4. Dynamic

5. (Massively parallel)

 Mostly for completeness and not discussed further
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Compile-time static

 Communication pattern is completely 

described in source code

 Shape is independent of all input parameters

 Implementation in MPI

 Either collectives or bunch of send/recvs

 Proposal for “Sparse collectives” allows 

definition of arbitrary collectives (MPI 3?)

 Examples:

 MIMD Lattice Computation (MILC) – 4d grid

 Weather Research and Forecasting (WRF) – 2d grid

 ABINIT – collectives only (Alltoall for 3d FFT)
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Run-time static

 Communication pattern depends on input but is fixed 

during execution

 Can be compiled once at the beginning

 Implementation in MPI

 Use graph partitioner (ParMetis, Scotch, …)

 Send/recv communication for halo zones

 Will be supported by “Sparse Collectives”

 Examples:

 TDDFT/Octopus – finite difference stencil on real domain

 Cactus framework

 MTL-4 (sparse matrix computations)
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Run-time flexible

 Communication pattern depends on input but 

changes over time

 However, there is still some locality 

 Implementation in MPI

 Graph partitioning and load balancing

 Typically send/recv communication (often request/reply)

 Static optimization might be of little help if pattern 

changes too frequently

 Examples:

 Enzo – cosmology simulation - 3d AMR

 Cactus framework - Berger-Oliger AMR
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Dynamic

 Communication pattern only depends on input and 

has no locality

 Little can be done: BSP might not be the ideal model

 Implementation in MPI:

 Typically send/recv request/reply 

 Active message style

 Often employ “manual” termination 

detection with collectives (Allreduce)

 Not a good fit to MPI 2.2 (MPI 3?)

 Examples:

 Parallel Boost Graph Library (PBGL) – implements 

various graph algorithms on distributed memory
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Our Proposal

 Specify collective operations explicitly

 MPI has collectives

 … but they are inadequate

 Want to express sparse collectives easily

 A declarative approach to specifying communication 

patterns

 Describe the what, not the how, of communications

 An abstract specification that is implemented 

efficiently

 Don’t talk about individual messages
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Benefits

 Abstract specification

 Easier for programmers to understand

 Easier for compilers to optimize

 Overlap communication and computation

 Message coalescing, pipelining, etc.

 Does not need to be implemented as BSP (weak sync.)

 An efficient runtime

 That can choose an implementation approach based on 

memory/network tradeoffs

 Use one-sided or two-sided based on hardware
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Compile-time static

 Communication patterns expressed as a set of 

individual communication operations

 Built by quantifying over processors, array rows, etc.

 Dense and sparse collectives are supported directly

 Compiler optimizations apply readily

for all nodes p in grid:

send A[0] on p to B[n] on up(p)

and A[n] on p to B[0] on down(p)
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Run-time static and flexible

 Collective communication pattern can be generated 

at run-time, and regenerated as necessary

 Communication operations can use array references, etc.

 Compiler analyses are more difficult in these cases

 Run-time optimization must sometimes be used

 Communication patterns may not be known globally

 Not scalable for large systems

 Conversion to multicast/… trees may be impossible

for all nodes p in grid:

send A[0] on p to B[n] on next[p]
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Summary

 Communications in BSP-style programs should be 

expressed as collective operations

 We suggest using a declarative specification of the 

communication operations

 Better ease of development

 Enables compiler optimizations (e.g., removing strict 

synchronization)

 Our approach can be embedded into an existing 

programming language as a library

 Can be added incrementally to existing applications
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Thank you for your attention!

Discussion


