
The Case for 

Collective Pattern Specification

Torsten Hoefler, Jeremiah Willcock, 

ArunChauhan, and Andrew Lumsdaine

Advances in Message Passing, Toronto, ON, June 2010



Torsten Hoefler and Jeremiah Willcock

Motivation and Main Theses

 Message Passing (MP) is a useful programming concept

 Reasoning is simple and (often) deterministic

 Message Passing Interface (MPI) is a proven interface definition

 MPI often cited as “assembly language of parallel 

computing”

 Not quite true as MPI offers collective communication

 But: Many relevant patterns are not covered

 e.g., nearest neighbor halo exchange

 Bulk Synchronous Parallelism is a useful 

programming model for MP programs

 Easy to reason about the state of the program

 cf. structured programming vs. goto



Torsten Hoefler and Jeremiah Willcock

Valiant’s BSP Model

 Envisioned as hardware and software model

 SPMD program execution is split into k supersteps

 All instances are in the same superstep

 Implies synchronization / synchronous execution 

 Messages can be sent and received during superstepi

 Received messages can be accessed in superstepi +1

 Our claim:

 Many algorithm communication patterns are constant or 

exhibit temporal locality

 Should be defined as such!

 Allows various optimizations

 Takes the MPI abstractions to a new (higher) level



Torsten Hoefler and Jeremiah Willcock

Classification of Communication Patterns

 We classify applications (or algorithms) into five main 

classes of communication patterns

1. Compile-time static

2. Run-time static

3. Run-time flexible

4. Dynamic

5. (Massively parallel)

 Mostly for completeness and not discussed further



Torsten Hoefler and Jeremiah Willcock

Compile-time static

 Communication pattern is completely 

described in source code

 Shape is independent of all input parameters

 Implementation in MPI

 Either collectives or bunch of send/recvs

 Proposal for “Sparse collectives” allows 

definition of arbitrary collectives (MPI 3?)

 Examples:

 MIMD Lattice Computation (MILC) – 4d grid

 Weather Research and Forecasting (WRF) – 2d grid

 ABINIT – collectives only (Alltoall for 3d FFT)



Torsten Hoefler and Jeremiah Willcock

Run-time static

 Communication pattern depends on input but is fixed 

during execution

 Can be compiled once at the beginning

 Implementation in MPI

 Use graph partitioner (ParMetis, Scotch, …)

 Send/recv communication for halo zones

 Will be supported by “Sparse Collectives”

 Examples:

 TDDFT/Octopus – finite difference stencil on real domain

 Cactus framework

 MTL-4 (sparse matrix computations)



Torsten Hoefler and Jeremiah Willcock

Run-time flexible

 Communication pattern depends on input but 

changes over time

 However, there is still some locality 

 Implementation in MPI

 Graph partitioning and load balancing

 Typically send/recv communication (often request/reply)

 Static optimization might be of little help if pattern 

changes too frequently

 Examples:

 Enzo – cosmology simulation - 3d AMR

 Cactus framework - Berger-Oliger AMR



Torsten Hoefler and Jeremiah Willcock

Dynamic

 Communication pattern only depends on input and 

has no locality

 Little can be done: BSP might not be the ideal model

 Implementation in MPI:

 Typically send/recv request/reply 

 Active message style

 Often employ “manual” termination 

detection with collectives (Allreduce)

 Not a good fit to MPI 2.2 (MPI 3?)

 Examples:

 Parallel Boost Graph Library (PBGL) – implements 

various graph algorithms on distributed memory



Torsten Hoefler and Jeremiah Willcock

Our Proposal

 Specify collective operations explicitly

 MPI has collectives

 … but they are inadequate

 Want to express sparse collectives easily

 A declarative approach to specifying communication 

patterns

 Describe the what, not the how, of communications

 An abstract specification that is implemented 

efficiently

 Don’t talk about individual messages



Torsten Hoefler and Jeremiah Willcock

Benefits

 Abstract specification

 Easier for programmers to understand

 Easier for compilers to optimize

 Overlap communication and computation

 Message coalescing, pipelining, etc.

 Does not need to be implemented as BSP (weak sync.)

 An efficient runtime

 That can choose an implementation approach based on 

memory/network tradeoffs

 Use one-sided or two-sided based on hardware



Torsten Hoefler and Jeremiah Willcock

Compile-time static

 Communication patterns expressed as a set of 

individual communication operations

 Built by quantifying over processors, array rows, etc.

 Dense and sparse collectives are supported directly

 Compiler optimizations apply readily

for all nodes p in grid:

send A[0] on p to B[n] on up(p)

and A[n] on p to B[0] on down(p)



Torsten Hoefler and Jeremiah Willcock

Run-time static and flexible

 Collective communication pattern can be generated 

at run-time, and regenerated as necessary

 Communication operations can use array references, etc.

 Compiler analyses are more difficult in these cases

 Run-time optimization must sometimes be used

 Communication patterns may not be known globally

 Not scalable for large systems

 Conversion to multicast/… trees may be impossible

for all nodes p in grid:

send A[0] on p to B[n] on next[p]



Torsten Hoefler and Jeremiah Willcock

Summary

 Communications in BSP-style programs should be 

expressed as collective operations

 We suggest using a declarative specification of the 

communication operations

 Better ease of development

 Enables compiler optimizations (e.g., removing strict 

synchronization)

 Our approach can be embedded into an existing 

programming language as a library

 Can be added incrementally to existing applications



Torsten Hoefler and Jeremiah Willcock

Thank you for your attention!

Discussion


