The Case for
Collective Pattern Specification

Torsten Hoefler, Jeremiah Willcock,
ArunChauhan, and Andrew Lumsdaine

Advances in Message Passing, Toronto, ON, June 2010

Motivation and Main Theses

» Message Passing (MP) is a useful programming concept
» Reasoning is simple and (often) deterministic
» Message Passing Interface (MPI) is a proven interface definition

» MPI often cited as “‘assembly language of parallel
computing”
» Not quite true as MPI offers collective communication
» But: Many relevant patterns are not covered
e.g., nearest neighbor halo exchange

» Bulk Synchronous Parallelism is a useful
programming model for MP programs

» Easy to reason about the state of the program
cf. structured programming vs. goto

I L L I N O I S Torsten Hoefler and Jeremiah Willcock ‘ INDIANA UNIVERSITY

ITIT8| UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | PERVASIVE TECHNOLOGY INSTITUTE

LLXM| UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Valiant’s BSP Model

» Envisioned as hardware and software model
» SPMD program execution is split into k supersteps
» All instances are in the same superstep
Implies synchronization / synchronous execution

» Messages can be sent and received during superstepi
Received messages can be accessed in superstepi +1

» Our claim:
» Many algorithm communication patterns are constant or
exhibit temporal locality
Should be defined as such!
Allows various optimizations
Takes the MPI abstractions to a new (higher) level

]T I LLIN O I S Torsten Hoefler and Jeremiah Willcock | INDIANA UNIVERSITY

‘ PERVASIVE TECHNOLOGY INSTITUTE

Classification of Communication Patterns

» We classify applications (or algorithms) into five main
classes of communication patterns

Rank 7

1. Compile-time static ™
2. Run-time static
5. Run-time flexible o
4. Dynamic -

5. (Massively parallel)
» Mostly for completeness and not discussed further

I L L I N O I S Torsten Hoefler and Jeremiah Willcock Ip INDIANA UNIVERSITY

ITIT8| UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | PERVASIVE TECHNOLOGY INSTITUTE

Compile-time static

» Communication pattern is completely
described in source code

» Shape is independent of all input parameters

» Implementation in MPI
» Either collectives or bunch of send/recvs

» Proposal for “Sparse collectives” allows
definition of arbitrary collectives (MPI 37?)

» Examples:
» MIMD Lattice Computation (MILC) — 4d grid
» Weather Research and Forecasting (WRF) — 2d grid
» ABINIT — collectives only (Alltoall for 3d FFT)

]
UL Jddd
s

INDIANA IVERSITY
I L L I N O I S Torsten Hoefler and Jeremiah Willcock ‘ N NA UNIV S

(TE8| UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | PERVASIVE TECHNOLOGY INSTITUTE

Run-time static

» Communication pattern depends on input but is fixed
during execution '
» Can be compiled once at the beginning

» Implementation in MPI
» Use graph partitioner (ParMetis, Scotch, ...)
» Send/recv communication for halo zones
» Will be supported by “Sparse Collectives”
» Examples:
» TDDFT/Octopus — finite difference stencil on real domain

» Cactus framework
» MTL-4 (sparse matrix computations)

INDIANA UNIVERSITY
jl ILLINOTIS Torsten Hoefler and Jeremiah Willcock | IN NA UNIVERS

(TE8| UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | PERVASIVE TECHNOLOGY INSTITUTE

Run-time flexible

» Communication pattern depends on input but
changes over time «

» However, there is still some locality

» Implementation in MPI
» Graph partitioning and load balancing
» Typically send/recv communication (often request/reply)

» Static optimization might be of little help if pattern
changes too frequently

» Examples:
» Enzo — cosmology simulation - 3d AMR
» Cactus framework - Berger-Oliger AMR

INDIANA UNIVERSITY
jl ILLINOTIS Torsten Hoefler and Jeremiah Willcock | IN NA UNIVERS

(TE8| UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | PERVASIVE TECHNOLOGY INSTITUTE

Dynamic

» Communication pattern only depends on input and
has no locality

» Little can be done: BSP might not be the ideal model

» Implementation in MPI:
» Typically send/recv request/reply
Active message style
» Often employ “manual” termination .-
detection with collectives (Allreduce)
» Notagood fitto MP1 2.2 (MPI13?)

» Examples:

» Parallel Boost Graph Library (PBGL) — implements
various graph algorithms on distributed memory

jl I LLIN O I S Torsten Hoefler and Jeremiah Willcock | INDIANA UNIVERSITY

(TE8| UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | PERVASIVE TECHNOLOGY INSTITUTE

Our Proposal

» Specify collective operations explicitly

» MPI has collectives
... but they are inadequate

» Want to express sparse collectives easily

» A declarative approach to specifying communication
patterns

» Describe the what, not the how, of communications

» An abstract specification that is implemented
efficiently

» Don’t talk about individual messages

I L L I N O I S Torsten Hoefler and Jeremiah Willcock ‘ INDIANA UNIVERSITY

ITIT8| UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | PERVASIVE TECHNOLOGY INSTITUTE

Benefits

» Abstract specification
» Easier for programmers to understand

» Easier for compilers to optimize
» Overlap communication and computation
» Message coalescing, pipelining, etc.
» Does not need to be implemented as BSP (weak sync.)

» An efficient runtime

» That can choose an implementation approach based on
memory/network tradeoffs

» Use one-sided or two-sided based on hardware

INDIANA UNIVERSITY
jl ILLINOTIS Torsten Hoefler and Jeremiah Willcock | IN NA UNIVERS

(TE8| UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | PERVASIVE TECHNOLOGY INSTITUTE

Compile-time static

» Communication patterns expressed as a set of
iIndividual communication operations

» Built by quantifying over processors, array rows, etc.
» Dense and sparse collectives are supported directly
» Compiler optimizations apply readily

for all nodes p 1n grid:
send A[O] on p to B[n] on up(p)
and A[n] on p to B[0O] on down(p)

I L L I N O I S Torsten Hoefler and Jeremiah Willcock ‘ INDIANA UNIVERSITY

ITIT8| UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | PERVASIVE TECHNOLOGY INSTITUTE

Run-time static and flexible

» Collective communication pattern can be generated
at run-time, and regenerated as necessary

» Communication operations can use array references, etc.

» Compiler analyses are more difficult in these cases
» Run-time optimization must sometimes be used

» Communication patterns may not be known globally
» Not scalable for large systems
» Conversion to multicast/... trees may be impossible

for all nodes p 1n grid:
send A[0O] on p to B[n] on next[p]

I L L I N O I S Torsten Hoefler and Jeremiah Willcock ‘ INDIANA UNIVERSITY

ITIT8| UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | PERVASIVE TECHNOLOGY INSTITUTE

Summary

» Communications in BSP-style programs should be
expressed as collective operations

» We suggest using a declarative specification of the
communication operations
» Better ease of development

» Enables compiler optimizations (e.g., removing strict
synchronization)

» Our approach can be embedded into an existing
programming language as a library

» Can be added incrementally to existing applications

I L L I N O I S Torsten Hoefler and Jeremiah Willcock ‘ INDIANA UNIVERSITY

ITIT8| UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN | PERVASIVE TECHNOLOGY INSTITUTE

1867

Thank you for your attention!

input: LA
L\
\\“'.\'n‘.)'- .

+ foreach

T EX oM

3 \\l\ll(" i ‘ "1 Lo g AL A8 B

; vl LR

thwen apletion

.' (hen done

.
i
¢

:“T ILLIN O I S Torsten Hoefler and Jeremiah Willcock IIJ INDIANA UNIVERSITY

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN ‘ PERVASIVE TECHNOLOGY INSTITUTE

