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Abstract

Accurate measurement and modeling of network performance is important for
predicting and optimizing the running time of high-performance computing appli-
cations. Although the LogP family of models has proven to be a valuable tool for
assessing the communication performance of parallel architectures, non-intrusive
LogP parameter assessment of real systems remains a difficult task. Based on an
analysis of accuracy and contention properties of existing measurement methods,
we develop a new low-overhead measurement method which also assesses protocol
changes in the underlying transport layers. We use the gathered parameters to sim-
ulate LogGP models of collective operations and demonstrate the errors in common
benchmarking methods for collective operations. The simulations provide new in-
sight into the nature of collective algorithms and their pipelining properties. We
show that the error grows linearly with the system size.

Key words: LogP, LogGP, Network Modeling, Benchmarking, Simulation,
Collective Operations

1 Introduction

Network performance prediction is very important for assessing the quality
of parallel algorithms and predict their runtime on future architectures. We
propose a low-overhead measurement method to assess LogGP parameters
accurately and to detect network protocol changes which are often introduced
by high-level communication libraries, such as MPI [1]. We then use our results
to simulate collective algorithms to show possible sources of errors when such
operations are benchmarked.
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Various network models have been proposed in the past. One class of mod-
els targets specific hardware, network architectures, or the shared memory
paradigm [2,3]. Other models are general-purpose and attempt to be architecture-
independent, for example the PRAM [4,5], BSP [6], or the LogP [7] models.
Several studies have compared the accuracy of those models [8,9]. In general,

it seems that the LogP model family bridges the complexity of real-world in-
terconnection networks and the usability of an abstract network model fairly
well.

The LogP model family comprises the original model proposed by Culler et
al. as well as a number of different extensions intended to improve predic-
tion accuracy by considering different network effects. The LogGP model by
Alexandrov et al. [10] models large messages with the new G parameter that
indicates bulk-transfer rates. Using the LogGP model instead of the simpler
Hockney model [11] separates the CPU and network times and thus enables
detailed measurement of the communication overheads. This distinction be-
tween CPU overhead and network parameters enables researchers to model
overlap of communication and computation efficiently. We use this ability to
assess the overlap potential of different network interconnect architectures and
to optimize the implementation of our non-blocking collective operations li-
brary LibNBC [12]. The models of the LogP family have been used by different
research groups to derive new algorithms for parallel computing, predict the
performance of existing algorithms, or prove an algorithm’s optimality [13—
18]. While the derivation of new algorithms and the proof of optimality can
be done without actual parameter values, accurate measurement methods for
each parameter are necessary to predict performance of the parallel algorithms.
LogGP can also be used to adaptively change algorithms to react to parameter
changes, for example, in wide-area networks. Another possible application is
message scheduling, i.e., schedule messages across multiple, probably homoge-
neous, network interfaces to minimize the cumulative transmission time. All
those methods need to assess the model parameters while the application runs.
Such applications require a low-overhead measurement method that avoids
network flooding or saturation.

One difficulty with simple direct parameter measurement is the fact that most
modern communication systems use message-size dependent protocols to op-
timize communication (e.g., [19,20]). Small messages are often copied to pre-
pared (or pre-registered) local send or remote receive buffers to speed up the
communication. This method is commonly named eager protocol. Larger mes-
sages can not be copied directly to the receiver and are handled with a syn-
chronizing protocol, often called rendezvous protocol. More protocol types can
be introduced by the developer of the communication subsystem as needed.
The switch between those protocol types is usually transparent to the user.
Our measurement method is able to recognize protocol switches automatically
because changes in the transmission parameters can be detected. We compute



individual parameter sets for all identified protocol ranges.

1.1  Background and Related Work

The LogGP model as described by Alexandrov et al. in [10] consists of the
following parameters: L is an upper bound on the Latency of a send operation
from one processor to another. o is the overhead, i.e., the time that the host
processor is engaged in the transmission or reception of a message. g is the
gap between two consecutive messages. It defines the minimum time-interval
between two message sends or receptions. G is the Gap per byte for long
messages. [t defines the time needed to transmit a single byte for the bulk-
transfer of long messages. P is the number of involved Processors. Several
studies, including ours, often differentiate between in o, and o, as send and
receive overhead, however, when citing other works we sometimes use o to
adhere to the original notation. In the following, we review some of the well-
known approaches, discussing the sources of error in those approaches.

The first measurement method for the LogP model was proposed by Culler
et al. in [21]. Culler splits the overhead o into o5 on the sender side and o,
on the receiver side. To assess os, the time to issue a small number (n) of
send operations is measured and divided by n. We note that this technique
could be problematic on modern architectures which tend to copy messages
to a temporary buffer for later transmission (e.g., TCP/IP sockets or Message
Passing Interface (MPI) eager messages). As a result, the measurement of o
would depend on n and only be accurate for very large number of messages
when all buffers are filled. However, it is clear that a large number of messages
would measure g. The receive overhead o, is measured by sending multiple
messages with a delay, bigger than the round trip time (RTT), after each
send. This enables a computation of o, based on the delay and the measured
0s. However, this makes the accuracy o, dependent on the accuracy of o
and introduces additional errors. The g parameter is simply benchmarked by
flooding the network with many small messages and dividing the time by the
number of messages. Finally, L can be computed from the other parameters
with L = BTT/2 — o, — 0,. A similar approach was used by lanello et al. in [22],
to assess the LogP parameters for Myrinet.

Kielmann et al. introduces the new pLogP (parametrized LogP) model and
presents techniques to measure the parameter in [23]. He also shows how
to reduce pLogP parameters to LogGP parameters. The send overhead o, is
simply measured as the time to send a single message. This measurement is
influenced by caching effects similar to the original idea in [21]. The receive
overhead o, is defined as the time to copy the message from the receive buffer,
which neglects the time in which the system is busy to receive the message to



the temporary buffer (cf. TCP/IP sockets). The gap ¢ is measured by sending
n messages to a peer and the peer sends a single message back after it has
received all n messages. The time between the first send and the reception of
the final answer divided by n is reported as g. The n messages and a single reply
message need (n-g+ L)+ (L+g) in pLogP and an error of (2L + g)/n is made
if one simply divides this sum by n. The impact of this error can be reduced
if n is large enough so that (2L 4 ¢)/n < g¢. If we try to reach 1% accuracy,
we need n > (2L + ¢)/(g - 0.01), which results in n > 19640 if we use the
LogGP parameters for TCP/IP (see Section 3). The pLogP latency L is simply
computed from the RTT of a zero-byte message L = (RTT(0)—2¢(0))/2. The
fact that every parameter depends on the message size improves the accuracy
of the model but also significantly complicates the model and the predictions.

The most recent work, and the only one that assesses all LogGP parameters
besides L, was proposed by Bell et al. in [24]. The parameter oy is measured
with a delay between message sends. This delay d is adjusted until d + o
fits g + (s — 1)G for a specific message size s exactly. This requires multiple
measurement steps to adjust the correct d. The send overhead o, is computed
via g+ (s —1)G —d, which relies on the correctness of g and G. The method to
assess o, is similar to the method in [21], but the transmission of the answer is
delayed on the receiver side. A technique similar to pLogP is used to measure
g, which suffers from the same problem that a huge number of packets (n)
must be sent to get an accurate measurement and the network is effectively
flooded. L can not be measured because modern networks tend to start the
message transmission before the CPU is done (L is started before o ends). Bell
et al. introduce the more practically oriented end-to-end latency (EEL) which
denotes the RTT for a very small packet.

All proposed schemes use only single message sizes to derive parameters, which
could be inaccurate for some networks that show anomalies at specific message
sizes. The second problem with some methods is that the accuracy depends
on the number of sent messages, which makes network flooding necessary
to achieve good predictions. However, flooding causes unnecessary network
contention and should not be used during application runs. We propose a new
measurement scheme that avoids flooding as much as possible and delivers
accurate parameters. The following section describes the working principle of
our new measurement method.

2 Accurately Measuring LogGP Parameters

Modeling network transmissions can be helpful to optimize communication
during application run time. However, most environments are changing un-
der different loads (e.g., wide-area networks or oversubscribed communication
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Fig. 1. Different microbenchmarking schemes.

networks). Thus, network parameters are changing over time and must be re-
assessed during the runtime of the application. Run-time assessment should
not introduce significant overhead. We describe a new low-overhead LogGP
parameter assessment method, based on our findings in [25], in the following.

2.1 System Constraints

Many parallel systems do not have an accurately synchronized clock with a
resolution that is high enough to measure network transmissions (in the order
of microseconds). As a result, developers of network benchmarks must perform
all time measurements locally on each machine. Many benchmarks (e.g., Net-
pipe, Pallas Micro Benchmarks (PMB [26])) use a so-called ping-pong scheme
to benchmark message round trip times (RTT). This scheme uses two hosts:
the client that initiates the communication and measures RTTs, and the server
that mirrors all received packets back to the client. This common scheme is
shown in Figure 1(a). Other schemes, such as ping-ping (originally mentioned
in [26]), shown in Figure 1(b), can be used to measure the performance of mul-
tiple consecutive message sends. However, one has to be aware that a ping-ping
with many packets quickly saturates the network and introduces contention.
An additional degree of freedom for the benchmark is a ping-ping scheme with
an artificial delay between each message send. Such a delay can be achieved
by a fixed-size computation on the CPU.

2.2 Definitions

We combine the previously mentioned possibilities and use them to assess
all LogGP parameters as unintrusively as possible. We introduce the notion



of the parametrized round trip time (PRTT) to define a specific parameter
combination for the RTT. The possible parameters are the number of ping-
ping packets (n), the delay between each packet (d) and the message size (s).
A measurement result of a specific combination of n, d and s is denoted as
PRTT(n,d,s). The following subsections show that the notion of PRTT(n,d,s)
is sufficient to assess all LogGP parameters accurately without network flood-
ing or unnecessary contention.

The parametrized round trip time for a single ping-ping message without delay
can be expressed in terms of the LogGP model as follows:

PRTT(1,0,5) =2 (L + 0y + 0, + (s — 1)G). (1)

If we define the cumulative hardware gap Gy = g+ (s—1)G, then n ping-ping
messages can be modeled as (the original LogGP model defines o < G )

PRTT(n,0,8)=2-(L+os+0,+(s—1)-G)+(n—1) -Gay -

With (1), we get

PRTT(n,0,s)=PRTT(1,0,s) + (n—1) - Gay . (2)

This equation can easily be extended to the general case with a variable delay
d as

PRTT(n,d,s)=PRTT(1,0,s) + (n — 1) - max{os + d,Guy} - (3)

In the following sections, we explain how to use the parametrized roundtrip
time to assess the LogGP parameters of different network interfaces.

2.3 Assessment of the Querheads o, and o,

Previous works have shown that the overhead might not be constant with
varying message sizes. Thus, we define a method to accurately measure the
overheads for every message size. If we rewrite Equation (3) to

PRTT(n,d,s)— PRTT(1,0,s)
n—1

=max{os +d,Gu} ,

and choose d¢, such that dg > Gy, we get
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Fig. 2. Measurement Method for o for n = 3. This figure shows the components of
PRTT(n,d,s).

PRTT(n,dg,s) — PRTT(1,0, s)

n—1

=0, +dg . (4)

This enables us to compute o from the measured PRTT(n,dg,s) and
PRTT(1,0,s). We chose PRTT(1,0,s) for dg to ensure that dg > Ggy. This
assumption has been proven to be valid for all tested networks. However, if a
network with a very low latency L and a very high gap g exists, one can fall
back to dg = PRTT(2,0,s) to guarantee dg > Ggy. We chose PRTT(1,0,s)
to avoid unnecessary long benchmark times.

The measurement of os for n = 3 is illustrated in Figure 2. The entire fig-
ure represents a LogGP model for PRTT(3,dg, s) and it is easy to see that
the last part is a simple PRTT(1,0,s). If we subtract PRTT(1,0,s) from
PRTT(3,dg, s), we get 2dg + 20, which equals to (n —1)(dg + 0s) (recall that
n = 3 in our example) as shown in Equation (4).

This measurement method enables us to obtain a fairly accurate value of o, for
each message size s. It needs only a small number of messages (we used n = 10
in our tests) and thus does not saturate or flood the network to measure o.
Furthermore, we are able to compute o, directly from a single measurement
and without depending on other LogGP parameters which would increase the
measurement error. We do also not need to adjust d stepwise to fit other values.
The measurement of o, can be performed as proposed by Kielmann [23]. We are
aware that this method will not produce accurate results. However, empirical
experiments show that this method measures reasonable receive overheads for
all networks that we investigated.

2.4 Assessment of the Gap Parameters g,G

Using Equation (2), we get a linear function of the form f(s) = G-(s—1)+g:



PRTT(n,0,s) — PRTT(1,0,s)
n—1

G(s—1)4+g=

One could simply measure PRTT(n,0,s) and PRTT(1,0,s) for two different
s and solve the resulting system of linear equations directly. However, several
networks have anomalies or a huge deviation between different data sizes.
Another problem is that this method would not allow us to detect protocol
changes in the lower levels that influence the LogGP parameters.

Instead, we chose to measure PRTT(n,0,s) and PRTT(1,0,s) for many dif-
ferent s and fit a linear function to these values. The function value for s = 1
is our ¢ and the slope of this function represents our G.

We use the least squares method [27], which can be solved directly for the
needed two degrees of freedom (g and G), to perform the fit. It provides us
an accurate tool to assess g and G with multiple different message sizes and
to detect protocol/parameter changes in the underlying transport layers (see
Section 2.6). We use only a small n to benchmark every single message size.
Thus, we do not need to flood or overload the network and our results are not
influenced by anomalies for specific message sizes (like we experienced with
TCP). Furthermore, we are able to use our method to detect changes in the
underlying communication protocol, as described in Section 2.6. A graphical
representation of our method with Open MPI over InfiniBand is shown in
Figure 3.
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Fig. 3. Parameter Benchmark and Fit for Open MPI over InfiniBand.



2.5 Assessment of the Latency Parameter L

Bell et al. discussed the interesting phenomenon that the occurrence of L and
o is not ordered. It happens on modern interconnect networks that o and a
part of L overlap (e.g., some message processing is done after the sending of
the message is started). This is due to the fact that the network developers
strive to minimize the round trip time and try to move all the bookkeeping
after the message is sent. This effect does not allow us to measure a useful L
(L may even be negative in certain situations). We take a similar approach as
[24] and report half of the round trip time of a small message as latency. We
use PRTT(1,0,1)/2 for this purpose.

2.6 Detection of Protocol Changes

Modern network APIs are complex systems and try to deliver highest per-
formance to the user. This requires to use different transport protocols for
different message sizes. It is obvious that each transport protocol has its own
unique set of LogGP parameters. The problem is that the network APIs aim
to be transparent to the user and do often not indicate protocol switches di-
rectly. These facts can make LogGP benchmarks very inaccurate if one does
not differentiate between the used transport modes. Our approach is to detect
those protocol changes automatically and provide a different set of LogGP
parameters for each transport type to the user.

We define the mean least squares deviation from measurement point & to [
and the fit-function f(s) = G- s+ g as

S (G- size(i) + g — val(i))?

(6)

where val(7) is the measured value at point ¢ and size(7) is the message-size
at point i. We substract 2 in the denominator because we have 2 degrees of
freedom for the solution of the least squares problem.

We take an z point look-ahead method and compare the mean least
squares deviation of the intervals [lastchange : current] with the devia-
tion of the interval [lastchange : current + 1], [lastchange : current + 2], ...,
[lastchange : current + x]. We define lastchange as the first point of the actual
protocol (the point after the last protocol change, initially 0) and current as
our current point to test for a protocol change. If current is the last measured
value of a protocol, and a new protocol begins at current + 1, the mean least
squares deviation rises from this point on. We consider the next z (typically 3-



5) points to reduce the effect of single outliers. If Isq(lastchange, current + j)
V1 < j < z is larger than lsq(lastchange, current) - pfact, then we assume
that a protocol change happened at current. The factor pfact determines the
sensitivity of this method. Empirical studies unveiled that pfact = 2.0 was a
reasonable value for our experiments. However, this factor is highly network
dependent and further network-specific tuning may be necessary to detect all
protocol changes accurately.

3 Applying the Method

We implemented our approach as a new communication pattern in the exten-
sible open source Netgauge tool [28]. Netgauge is a modular network bench-
marking tool that uses high-precision timers (e.g., the x86 RDTSC instruction
[29]) to benchmark times accurately. An important difference between Net-
gauge and other tools like NetPipe [30], coNCePTual [31] or the Pallas Micro
Benchmarks (PMB) [26] is that the Netgauge framework offers the ability to
use MPI as infrastructure to distribute needed protocol or connection infor-
mation for other low-level APIs (e.g. Sockets, InfiniBand, SCI, Myrinet/GM
...) or to benchmark MPI_Send/MPI_Recv itself. This capability is important
for comparing low-level performance with MPI performance and enables the
user to assess the quality and overheads of specific MPI implementations. Our
LogGP communication pattern enables a detailed analysis of the introduced
software overhead.

Transmission modules for MPI, TCP, UDP, InfiniBand, and several other net-
works are included in Netgauge and enable us to compare the performance of
MPI with the underlying low-level API’s performance. More low-level modules
(e.g., SCI, Cell B.E.) are under development. The newest version of Netgauge
supports LogGP parameter measurement as described in this paper. We fol-
lowed the useful hints provided by Gropp et al. [32] to achieve reproducible
and accurate benchmark results.

As explained in Section 2, the PRTT(n,d,s) is sufficient to derive the LogGP
parameters. The choice of n is critical to benchmark performance (i.e., con-
gestion avoidance) and accuracy. It should be as small as possible to enable
fast measurements and still retain accuracy. We conducted several benchmarks
with different n and used the least squares deviation of the parameter fit as
base for our choice. Figure 4 shows the least squares deviations for different
values of n with Open MPI on Gigabit Ethernet. We see that n = 10 results in
the lowest average deviation on our available networks. Thus, we chose n = 10
as default in our implementation in Netgauge. The delay d is implemented as a
busy loop that checks high-performance timers (e.g., RDTSC [29]) repeatedly
until the d has elapsed. However, the choice of d is also not trivial because it

10
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Fig. 4. Least squares deviation for different values of n.

should be small to ensure fast measurements but it must also be larger than
Gay. We chose d = PRTT(1,0,s) in our implementation because we found
that this usually fulfills these criteria. However, a check is added after every
parameter calculation and a warning is printed if G,; > d. In case of a failure,
the user can easily fall back to d = PRTT(2,0, s) which is guaranteed to fulfill
the criteria, but increases the measurement time.

3.1 Results

We analyzed different interconnect technologies and parallel systems to eval-
uate their performance in the LogGP model. The evaluated systems are de-
scribed in Table 1. All presented results are very system dependent and we
suggest to re-run the benchmark for every system configuration. For exam-
ple, the overhead is heavily influenced by the performance of the main CPU
and the I/O subsystem. Our test-systems have very different CPU speeds and
chipset configurations, thus, the results can not serve as a network intercon-
nect comparison. It has to be ensured that the testing environment is exactly
identical in order to compare network interconnects.

We benchmarked TCP over Gigabit Ethernet and MPICH2 1.0.3, SCI with
NMPI 1.2, Single Data Rate (SDR) InfiniBand with Open MPI 1.1.2/openib,
Double Data Rate (DDR) ConnectX InfiniBand with Open MPI 1.2.8, Myrinet
2000 with Open MPT 1.1.2/GM, Myrinet 10G with Open MPI 1.2.8/MX and
Chelsio 10 Gigabit iWARP adapters with Open MPI 1.2.6/openib. The graphs
for G- (s — 1) + g (cf. Equation (5)) for several configurations are shown in
Figure 5.
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Transport CPU Additional Information

MPICH2 Opteron 246, 2GHz | MPICH2 1.0.3, BCM5704 GigE Net-
work Chip

NMPI/SCI Xeon 2.4GHz NMPI-1.2, SCI-Adapter PSB66 D33x

OMPI/IB (SDR)

Opteron 244

Open MPI 1.1.2, OFED-1.0, Mel-
lanox MT25208

OMPI/10G

Xeon 5160 3.0GHz

Open MPI 1.2.6, Chelsio T3 iWARP,
cxgb3_0

OMPI/IB (DDR)

Xeon L5420 2.5GHz

Open MPI 1.2.8, OFED-1.3, Mel-
lanox ConnectX

OMPI/GM Athlon MP 1.4GHz | Open MPI 1.1.2, GM 2.0.23, Myrinet
2000
OMPI/MX Xeon [.5420 2.5GHz | Open MPI 1.2.8, MX 1.4.3, Myrinet
10G
Table 1

Details about the test systems.
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Fig. 5. Measurement results for GigE/TCP, SCI, InfiniBand (SDR) and
Myrinet/GM (in this order). The graphs show f(s) = G- (s — 1) + g, such that
the slope indicates G and f(1) = g and the CPU overhead. The parameters of the
fitted functions for g and G can be found in Table 2.
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Table 2 shows the numerical results for the LogGP measurements on the
different systems. Blocking communication was used to measure those values.
The TCP results show that os,¢g and G are nearly identical for MPICH2
and RAW TCP (they are not distinguishable in the diagram because they lie
practically on the same line). We also see that oy is not constant as assumed
in the LogGP model but has a linear slope. We encounter no protocol change
for TCP in the interval [1,65536] bytes. The SCI results indicate that the
implementation uses polling to send messages because o, ~ G;;. We see three
different protocol regions for the MPI implementation NMPI (cf. Table 2).

InfiniBand also shows interesting behavior. The Open MPI openib component
uses polling to send or receive messages. A protocol change at approximately
12 kiB leads to a large increase of g. This is due to the rendezvous protocol
which introduces an additional RTT of a small status message, which costs
~ 2L + 40 in LogGP, before the actual transmission begins. The blocking
MPI_Send charges this to g because it has to wait until a message is sent
before it sends the next one. G is mainly identical across all message-sizes.
The low-level openib API has a small g and shows no protocol change. The
low-level overhead to post a send request is independent of the message size.
Open MPI introduces additional CPU overhead which is due to the local copy
(for eager send) or InfiniBand’s memory registration.

Myrinet/GM seems to use interrupts for small messages (0 < G;) and polling
for messages larger than 32 kiB (0 &~ G;;). The protocol change is again clearly
visible in the graph and is correctly recognized by our method. The low-level
API delivers a slightly lower G' and a similar g in the measured interval. The
overhead o of the GM API is constant (as it was for InfiniBand).

4 Simulating Collective Algorithms with LogGP

In order to show the importance of accurate measuring of LogGP parameters,
we use our parameters for different interconnection networks to show the be-
havior of different collective algorithms. It has been shown that the LogGP
model can be used to provide bounds on the communication time of collec-
tive algorithms. However, modeling a parallel application in this way is often
tedious and error-prone. A binomial tree communication pattern for exam-
ple has a complicated communication structure with regards to the finishing
time of every process and a closed form for the runtime estimation can not
be found easily. We show how to achieve accurate predictions using a discrete
event-driven simulation methodology for the LogGP model.

13



Transport Protocol Inter- | L (us) | o(1) (us) | g (us) | G (us/b)
val (bytes)
MPICH2/TCP 1<s 45.74 3.46 0.915 0.00849
NMPI/SCI 1 <5< 12289 5.48 6.10 7.78 0.0045
12289 < s 5.48 6.10 13.34 0.0037
OMPI/IB (SDR) | 1 < s < 12289 5.96 4.72 5.14 0.00073
12289 < s 5.96 4.72 21.39 0.00103
OMPI/10G 1 <5< 12289 10.97 5.05 5.00 0.0023
12289 < s 10.97 5.05 42.00 0.00101
OMPI/IB (DDR) | 1 < s < 12289 2.50 1.49 1.08 0.00067
12289 < s 2.50 1.49 11.90 0.00058
OMPI/GM 1 <5< 32769 10.53 1.27 9.44 0.0092
32769 < s 10.53 1.27 52.01 0.0042
OMPI/MX 1 <5< 32769 2.98 1.48 2.00 0.00081
32769 < s 2.98 1.48 33.10 0.00109
Table 2

LogGP Parameters for different Transport Protocols

4.1 Simulation Methodology

In this section we present a brief description of our simulator design which is
similar to [33]. We model a parallel algorithm with a set of partially depen-
dent send, receive and local transformation operations. Dependencies among
them, e.g., a send of a data item can only start after a local transformation
on this item is finished, are modeled as required by the parallel algorithm.
Our simulator models each process with a queue of outstanding operations.
Communication is by default modeled as non-blocking so that posted sends
and receives finish independently (this eliminates deadlocks). Each send and
receive is added to the queue and removed from the queue when matched. Re-
ceives are removed from the queue when a matching send arrived and a send is
either removed immediately (eager protocol) or after it matched a receive (ren-
dezvous protocol). Local times are updated according to the Lamport clock
condition [34]. The simulator also generates a time-line diagram which can be
used to visualize the simulation.

For example, consider a program where P processes communicate in a double-
ring. Process i receives one data item from process (i —1 mod P) and sends
to process (i +1 mod P) (forward ring) and, at the same time, it receives a
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data item from process (i + 1 mod P) and sends to process (i —1 mod P)
(backward ring). The two data items are originating at process 0. Figure 6
shows the timeline diagram (simulation output) for this communication with
P = 4. In this example, it becomes obvious why it is not easy to design explicit
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Fig. 6. LogGP timeline of double-ring communication pattern.

mathematical models for the running time of such algorithms. The problem
in this example is that the message from rank 3 and the message from rank 1
arrive at the same times at rank 2 and want to consume CPU resources. Thus,
the send from rank 3 is delayed until the CPU becomes available which delays
the global communication accordingly. Mathematically modeling such effects
for more complicated patterns is tedious and error-prone.

4.2 Simulation Results

Based on the LogGP model, we argue in [35] that many of the current bench-
marking strategies that are used for benchmarking MPI collective operations
deliver inaccurate results. In this work, we substantiate this claim with simula-
tion results that use real-world network parameters. Based on the availability
of an accurate LogGP benchmarking method and our simulation framework,
we are now able to assess the relative inaccuracy of common benchmarking
schemes. A common measurement mistake is to perform the same collective
operation n times in a loop and then report the total time divided by n. We
argued in [35] Section 1.2 that such measurements often underestimate the
time of a single collective operation due to message pipelining effects.

In the following, we demonstrate the effect with two different broadcast al-
gorithms, a binomial tree and pipelined broadcast. Both algorithms are used
in practice depending on the proportion of P and the message size s (cf. [9]).
Figure 7 shows the influence of pipelining on a measurement with P = 16 and
n=>o.

An intuitive fix, rotating the root, was proposed to avoid such pipelining tech-
niques. However, we show that this fix does not solve the problem. A visualiza-
tion of our two algorithms with root-rotation is shown in Figure 8. It only miti-
gates the measurement error and, for some algorithms, the asymptotic relative
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Fig. 7. LogGP Communication graphs for a common benchmarking scheme.

error in n is identical to the error without root rotation. Thus, we conclude
that root rotation does not fix the problem. If we assume a fixed n (n = 1000

Time Time

(a) Binomial Tree (b) Pipeline
Fig. 8. LogGP Communication graphs for change-root benchmarking scheme.

in our experiments) and we vary P, then we see that the measurement mistake
accumulates depending on the network type as shown in Figure 9(a). The sim-
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Fig. 9. Comparison of the different benchmarking schemes for two different broad-
cast algorithms: binomial tree and pipeline. The correct benchmarking scheme
is compared with the simple loop benchmark (loop) and a change-root scheme
(change) for Ethernet (ETH) and InfiniBand (IB).

ple loop scheme underestimates the actual broadcast time by several orders of
magnitude in case of the pipelined broadcast. The binomial tree broadcast is
also underestimated significantly. A change-root scheme mitigates the differ-
ence, but does not reach the quality of a synchronizing benchmark as proposed
in [35]. The root rotation also fails when the number of measurements/rota-
tions (n) is smaller than the number of processes. For example, the pipelined
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scheme measures a quasi-constant time for P > n. We also see in Figure 9(a)
that a wrong benchmarking scheme could lead to wrong decisions if the choice
of algorithms depends on a previously benchmarked model (cf. [9]) because
pipelined broadcasts erroneously seem superior to tree-based broadcasts up to
512 processes.

Figure 9(b) shows the scaling of the measurement error (the difference between
correct and benchmarked result) for Ethernet and InfiniBand. We see that the
error is much less with InfiniBand, however, the asymptotic behavior is similar.
We also see that the error depends on the used collective algorithm. The error
for binomial trees scales logarithmically with the number of processes while
the pipelined algorithm has a linear error. Based on those results, we strongly
suggest to benchmark each collective operation separately and not in a loop.

5 Conclusions and Future Work

We compared well known Log(G)P measurement methods and derived a
new accurate LogGP parameter measurement scheme. Our method is able
to detect protocol changes in the underlying communication subsystem. An
open source implementation within the Netgauge framework is available at
http://www.unixer.de/research/netgauge/

The precision with which we are able to assess LogGP parameters with our
approach suggests further refinements to the LogGP models and to the mea-
surement process. In particular, the overheads for receiving and sending (o,
and o4 respectively) are assumed to be constant and the same in current mod-
els. However, previous results and preliminary experiments with our frame-
work have shown that this is often not the case. Models and corresponding
measurement to account for this difference are the subject of future work.

We also presented a discrete event simulation framework for LogGP which uses
the benchmarked values and simulates real-world communication systems. We
utilized the simulation to assess the absolute error that is done by perform-
ing collective communication benchmarks in a loop. Our simulations help us
to gain a better understanding of effects in the network (such as pipelining
or endpoint contention). Our results show that simple techniques that have
been proposed to increase the accuracy of benchmarking techniques fail at
large scale. We showed that the absolute measurement error grows linearly or
logarithmically with the system size for a pipelined and tree-based broadcast
respectively.

We plan to investigate opportunities to simulate the influence of operating
system noise to large-scale systems with our LogGP simulation environment.
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Furthermore, we work on more detailed application simulation methods.
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