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Introduction

@ network performance measurement and prediction is
important

@ assess the runtime of parallel algorithms
@ optimize communication patterns (e.g., collective)

@ important for application programmers to choose
collectives
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Introduction

@ network performance measurement and prediction is
important

@ assess the runtime of parallel algorithms
@ optimize communication patterns (e.g., collective)

@ important for application programmers to choose
collectives

The approach

Accurately measure collective communication to derive and test
abstract models. Specialized models for hardware-supported
collectives.
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The LogGP Model
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The Tools to Measure

no central clock — measurements on one host only

client server client server
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First steps ... towards accurate modelling

@ measure communication performance correctly

@ some general hints given by Gropp et al. in “Reproducible
Measurements of MPI Performance Characteristics” and
Worsch et al. “On Benchmarking Collective MPI
Operations”

Common Mistakes

@ merging results on multiple processes incorrectly
@ pipelining effects in measurements

@ process skew during measurements

@ synchronization perturbation and congestion

@ network congestion
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“merging results on multiple processes incorrectly”

look at the following code-fragment from the MPP benchmark:

MPI_Gather(...); /* warmup */
MPI_Barrier(...); /* synchronization */
t0 = MPI_Wtime(); /* take time */
for (i=0; i<reps; i++) {

MPI_Gather(...); /* execute benchmark */
}
t1 = MPI_Wtime(); /* take time */
MPI_Barrier(...);
time = t1-t0;
if (rank == 0) report_time();
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“pipelining effects in measurements”

single measurement three measurements
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“process skew during measurements”

random skew
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“synchronization perturbation and congestion”
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Great, so it's not working?

That are all the problems and

what

Is the solution?
A scheme similar to SKaMPI!

with some changes though ...
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How does it work?

@ processes “synchronize” to get a global time

@ a designated process broadcasts a start time in the future
and a window size

@ all processes start at the same global time and run n
benchmarks in n time-windows

@ benchmarks that took longer than the window or started
late are discarded

@ window-size is determined adaptively at runtime

But ... | think it does not work!?

@ time-skew in cluster systems might be too big/instable
@ determination of the global time is inaccurate
@ much time could be wasted for synchronization/in windows

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine Performance Measurement



“time-skew in cluster systems might be too

big/instable”

@ we “benchmarked” CPU clock counters (Netgauge)
@ 50,000 measurements, once every second — 14 hrs
@ = yes, the clocks drift! But linearly (correctable :)
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“determination of the global time is inaccurate”

@ SKaMPI employs a linear scheme where RTT/2 is
substracted from the remote time
@ this might be problematic
@ is not scalable to high CPU counts
© the network latency varies (jitter)
@ = we propose a tree-based scheme with accurate
point-to-point time synchronization
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Point-to-point synchronization

Requirements
@ must accept high network jitter
@ must be fast (measurements depend adaptively on jitter)

@ measure round-trip times *and* clock differences at the
same time

@ use only measurements that are below a certain (latency)
threshhold

@ threshold has to be determined dynamically (adaptive to
jitter)

@ = repeat measurement until N successive measurements
dont have a smaller latency than the smallest
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How does that work?

@ let’s take a look at message latency distributions
@ recycle our 50,000 measurements from before
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What should we choose as N?

@ choice of N is non-trivial
@ modeling not easily possible :-( — simulation
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“much time could be wasted for synchronization

@ we propose tree-based scalable synchronization!
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tree-based synchronization

@ errors propagate logarithmically :-( ... but it’s fast:
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Conclusions and Future Work

@ improved collective benchmarking (NBCBench)
@ improved time-synchronization scheme
@ adaptive point-to-point synchronization
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Conclusions and Future Work

Conclusions

@ improved collective benchmarking (NBCBench)
@ improved time-synchronization scheme
@ adaptive point-to-point synchronization
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Future Work

@ verify collective operation models (Grbovic et. al.)
@ models for non-blocking collective operations
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