Accurately Measuring Collective Operations at

Massive Scale

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine

Open Systems Lab
Indiana University
Bloomington, USA

IPDPS’08 - PMEQO’08 Workshop
Miami, FL, USA
April, 18th 2008

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine Performance Measurement

Introduction

@ network performance measurement and prediction is
important

@ assess the runtime of parallel algorithms
@ optimize communication patterns (e.g., collective)

@ important for application programmers to choose
collectives

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine Performance Measurement

Introduction

@ network performance measurement and prediction is
important

@ assess the runtime of parallel algorithms
@ optimize communication patterns (e.g., collective)

@ important for application programmers to choose
collectives

The approach

Accurately measure collective communication to derive and test
abstract models. Specialized models for hardware-supported
collectives.

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine Performance Measurement

The LogGP Model

level

Sender Receiver

CPU
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
Network : h 4 4 :
1 1 1 1
1 1 1 1
1 1 1 1
'— PP '
Os l' ‘\ L " “ Or
~ . N A Y
g G g, G .
>

The Tools to Measure

no central clock — measurements on one host only

client server client server

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine Performance Measurement

First steps ... towards accurate modelling

@ measure communication performance correctly

@ some general hints given by Gropp et al. in “Reproducible
Measurements of MPI Performance Characteristics” and
Worsch et al. “On Benchmarking Collective MPI
Operations”

Common Mistakes

@ merging results on multiple processes incorrectly
@ pipelining effects in measurements

@ process skew during measurements

@ synchronization perturbation and congestion

@ network congestion

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine Performance Measurement

“merging results on multiple processes incorrectly”

look at the following code-fragment from the MPP benchmark:

MPI_Gather(...); /* warmup */
MPI_Barrier(...); /* synchronization */
t0 = MPI_Wtime(); /* take time */
for (i=0; i<reps; i++) {

MPI_Gather(...); /* execute benchmark */
}
t1 = MPI_Wtime(); /* take time */
MPI_Barrier(...);
time = t1-t0;
if (rank == 0) report_time();

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine Performance Measurement

“pipelining effects in measurements”

single measurement three measurements

g &
& X
=]
g \\éé\.‘
- =
2¢g L L+g L+2g \x
& =
g \.\
= -
Overhead g \x
g

\‘ Message TW
=

8g 6g+L 7g+L 8g+L

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine Performance Measurement

“process skew during measurements”

random skew

0 1 2 3
=
g \
g -
\
\
2g 0 (_)_ <L+2g

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine

root is late
0 1 2 3

y L

2g >L >L+g>L+2g

Performance Measurement

“synchronization perturbation and congestion”

()
—
[\
W

/ 3 B ', barrier
24\ 53 it 4 message

’) y 7 / 7
g | - |.- bcast

r message
g |, -7

e b
g | =3 bcast

N =4 overhead

g
g
g
g

3g 3g+L 3g+L 3g+L

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine Performance Measurement

Great, so it's not working?

That are all the problems and

what

Is the solution?
A scheme similar to SKaMPI!

with some changes though ...

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine Performance Measurement

How does it work?

@ processes “synchronize” to get a global time

@ a designated process broadcasts a start time in the future
and a window size

@ all processes start at the same global time and run n
benchmarks in n time-windows

@ benchmarks that took longer than the window or started
late are discarded

@ window-size is determined adaptively at runtime

But ... | think it does not work!?

@ time-skew in cluster systems might be too big/instable
@ determination of the global time is inaccurate
@ much time could be wasted for synchronization/in windows

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine Performance Measurement

“time-skew in cluster systems might be too

big/instable”

@ we “benchmarked” CPU clock counters (Netgauge)
@ 50,000 measurements, once every second — 14 hrs
@ = yes, the clocks drift! But linearly (correctable :)

20 - ‘
pair 1 +
18 - pair2 o
| pair3 xX 0"
8 18 pair4 o X508
® 44 |- pairb5 %00 |
£ pair 6 5
8 12 %
(] s
c el
© 10 e
2 Pl
© gpj
S 6 aE
Q ;Pﬁ
O 4 EL&
EEE%
2 o
0 L L

0 2 4 6 8 10 12 14

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine Performance Measurement

“determination of the global time is inaccurate”

@ SKaMPI employs a linear scheme where RTT/2 is
substracted from the remote time
@ this might be problematic
@ is not scalable to high CPU counts
© the network latency varies (jitter)
@ = we propose a tree-based scheme with accurate
point-to-point time synchronization

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine Performance Measurement

Point-to-point synchronization

Requirements
@ must accept high network jitter
@ must be fast (measurements depend adaptively on jitter)

@ measure round-trip times *and* clock differences at the
same time

@ use only measurements that are below a certain (latency)
threshhold

@ threshold has to be determined dynamically (adaptive to
jitter)

@ = repeat measurement until N successive measurements
dont have a smaller latency than the smallest

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine Performance Measurement

How does that work?

@ let’s take a look at message latency distributions
@ recycle our 50,000 measurements from before

Latency in usecs (GigE)
0 50 100 150 200 250 300

700 — e ‘
InfiniBand (IB) —— 1 1400
600 - Myrinet (GM)
. Ethernet (GigE) —— 1 1200
s)
S 500 { 1000 2
= 400 -
> 1 800 §
g 300 1600 3
o
g | 2
s 200 L 1 400 w
100 sk 1 200
0 L!' ‘ T—— 0

5 10 15 20 25 30 35 40
Latency in usecs (IB,GM)

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine Performance Measurement

What should we choose as N?

@ choice of N is non-trivial
@ modeling not easily possible :-(— simulation

100 ‘ ‘

2 cost (Gige/GM/IB) ——
- 90 quality (GigE) 7
a2 8ol quality (IB) —— P
= quality (GM) %7 10008 &
2 70 £
=] o
2 60 2
© i ©
é 50 100 QE,
& 40 5
o —
o 30 IS
2] IS
o 20 3
£ 10

1 10 100 1000

N

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine Performance Measurement

“much time could be wasted for synchronization

@ we propose tree-based scalable synchronization!

: group 1 ::"group2
0 1 2 3 4 5 6

S

t:

€

P

3

S

t:

e

P

2;

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine Performance Measurement

tree-based synchronization

@ errors propagate logarithmically :-(... but it’s fast:

0.35

0.3
2

g 025
=

S 0.2
g

= 0.15
o
=

Q 0.1
>
%)

0.05

0

traditional
optimized

-
e
-

60 80 100 120 140

Communicator Size

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine

Performance Measurement

Conclusions and Future Work

@ improved collective benchmarking (NBCBench)
@ improved time-synchronization scheme
@ adaptive point-to-point synchronization

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine Performance Measurement

Conclusions and Future Work

Conclusions

@ improved collective benchmarking (NBCBench)
@ improved time-synchronization scheme
@ adaptive point-to-point synchronization

4

Future Work

@ verify collective operation models (Grbovic et. al.)
@ models for non-blocking collective operations

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine Performance Measurement

