
Accurately Measuring Collective Operations at

Massive Scale

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine

Open Systems Lab
Indiana University
Bloomington, USA

IPDPS’08 - PMEO’08 Workshop

Miami, FL, USA

April, 18th 2008

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine Performance Measurement

Introduction

network performance measurement and prediction is

important

assess the runtime of parallel algorithms

optimize communication patterns (e.g., collective)

important for application programmers to choose

collectives

The approach

Accurately measure collective communication to derive and test

abstract models. Specialized models for hardware-supported

collectives.

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine Performance Measurement

Introduction

network performance measurement and prediction is

important

assess the runtime of parallel algorithms

optimize communication patterns (e.g., collective)

important for application programmers to choose

collectives

The approach

Accurately measure collective communication to derive and test

abstract models. Specialized models for hardware-supported

collectives.

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine Performance Measurement

The LogGP Model

CPU

Network

o s L
o

r

level

time

g, G

Sender Receiver

g, G

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine Performance Measurement

The Tools to Measure

no central clock → measurements on one host only

client serverclient server

o

o

o

g

g

o

o o

...

o

o

o

o

oo

o

o

o

L

L

L

L

L

L

...

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine Performance Measurement

First steps ... towards accurate modelling

measure communication performance correctly

some general hints given by Gropp et al. in “Reproducible

Measurements of MPI Performance Characteristics” and

Worsch et al. “On Benchmarking Collective MPI

Operations”

Common Mistakes

merging results on multiple processes incorrectly

pipelining effects in measurements

process skew during measurements

synchronization perturbation and congestion

network congestion

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine Performance Measurement

“merging results on multiple processes incorrectly”

look at the following code-fragment from the MPP benchmark:

MPI_Gather(...); /* warmup */

MPI_Barrier(...); /* synchronization */

t0 = MPI_Wtime(); /* take time */

for (i=0; i<reps; i++) {

MPI_Gather(...); /* execute benchmark */

}

t1 = MPI_Wtime(); /* take time */

MPI_Barrier(...);

time = t1-t0;

if (rank == 0) report_time();

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine Performance Measurement

“pipelining effects in measurements”

Overhead

Message

1 2 30

three measurements

L L

8g 6g+L 7g+L 8g+L

1 2 30

2g L L+g L+2g

single measurement

g

g

g

g

g

g

g

g

g

g
�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine Performance Measurement

“process skew during measurements”

�
�
�
�
�
�
�

�
�
�
�
�
�
�

1 2 30

root is late

1 2 30

2g 0 0 <L+2g

random skew

g

g

g

g

2g >L >L+g >L+2g

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine Performance Measurement

“synchronization perturbation and congestion”

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

0 1 2 3

barrier
message

g

g

g

3g 3g+L3g+L 3g+L

bcast
message

overhead
bcastg

g

g

g

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine Performance Measurement

Great, so it’s not working?

That are all the problems and

what

Is the solution?

A scheme similar to SKaMPI!

⇒ with some changes though ...

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine Performance Measurement

How does it work?

processes “synchronize” to get a global time

a designated process broadcasts a start time in the future

and a window size

all processes start at the same global time and run n

benchmarks in n time-windows

benchmarks that took longer than the window or started

late are discarded

window-size is determined adaptively at runtime

But ... I think it does not work!?

time-skew in cluster systems might be too big/instable

determination of the global time is inaccurate

much time could be wasted for synchronization/in windows

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine Performance Measurement

“time-skew in cluster systems might be too

big/instable”

we “benchmarked” CPU clock counters (Netgauge)

50,000 measurements, once every second → 14 hrs

⇒ yes, the clocks drift! But linearly (correctable :)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 2 4 6 8 10 12 14

C
lo

c
k
 d

if
fe

re
n
c
e
 i
n
 s

e
c

Time after start of measurement in h

pair 1
pair 2
pair 3
pair 4
pair 5
pair 6

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine Performance Measurement

“determination of the global time is inaccurate”

SKaMPI employs a linear scheme where RTT/2 is

substracted from the remote time

this might be problematic
1 is not scalable to high CPU counts
2 the network latency varies (jitter)

⇒ we propose a tree-based scheme with accurate

point-to-point time synchronization

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine Performance Measurement

Point-to-point synchronization

Requirements

must accept high network jitter

must be fast (measurements depend adaptively on jitter)

Solution

measure round-trip times *and* clock differences at the

same time

use only measurements that are below a certain (latency)

threshhold

threshold has to be determined dynamically (adaptive to

jitter)

⇒ repeat measurement until N successive measurements

dont have a smaller latency than the smallest

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine Performance Measurement

How does that work?

let’s take a look at message latency distributions

recycle our 50,000 measurements from before

 0

 100

 200

 300

 400

 500

 600

 700

 5 10 15 20 25 30 35 40
 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 50 100 150 200 250 300

F
re

q
u
e
n
c
y
 (

IB
,G

M
)

F
re

q
u
e
n
c
y
 (

G
ig

E
)

Latency in usecs (IB,GM)

Latency in usecs (GigE)

InfiniBand (IB)
Myrinet (GM)

Ethernet (GigE)

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine Performance Measurement

What should we choose as N?

choice of N is non-trivial

modeling not easily possible :-(→ simulation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 10 100 1000
 1

 10

 100

 1000

d
if
fe

re
n
c
e
 t
o
 o

p
ti
m

a
l
ro

u
n
d
tr

ip
 i
n
 %

n
u
m

b
e
r

o
f
m

e
a
s
u
re

m
e
n
ts

N

cost (GigE/GM/IB)
quality (GigE)

quality (IB)
quality (GM)

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine Performance Measurement

“much time could be wasted for synchronization”

we propose tree-based scalable synchronization!

T
2,3

T
0,1

T
0,2

T
4,0

T
5,1

T
6,2

T
2,3

T
6,2T

4,0
T

5,1

S
t
e
p

1

S
t
e
p

2

1 2 30 4 5

group 1 group 2

6

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine Performance Measurement

tree-based synchronization

errors propagate logarithmically :-(... but it’s fast:

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 20 40 60 80 100 120 140

S
y
n

c
h

ro
n

iz
a

ti
o

n
 T

im
e

 (
s
)

Communicator Size

traditional
optimized

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine Performance Measurement

Conclusions and Future Work

Conclusions

improved collective benchmarking (NBCBench)

improved time-synchronization scheme

adaptive point-to-point synchronization

Future Work

verify collective operation models (Grbovic et. al.)

models for non-blocking collective operations

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine Performance Measurement

Conclusions and Future Work

Conclusions

improved collective benchmarking (NBCBench)

improved time-synchronization scheme

adaptive point-to-point synchronization

Future Work

verify collective operation models (Grbovic et. al.)

models for non-blocking collective operations

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine Performance Measurement

