Leveraging Non-Blocking Collective

Communication in High-Performance
Applications

Torsten Hoefler, Peter Gottschling and Andrew Lumsdaine

Open Systems Lab
Indiana University
Bloomington, USA

20th ACM Symposium on Parallelism in Algorithms
and Architectures - SPAA’08
Munich, Germany
June, 14th 2008

Torsten Hoefler, Peter Gottschling and Andrew Lumsdaine Non-Blocking Collectives

Introduction

Features of non-blocking collective operations

@ hide full communication latency by overlapping
@ use the available bandwidth better

@ avoid detrimental effects of
pseudo-synchronization/process skew

@ make efficient use of the new semantics

LibNBC and MPI

@ implements all MPI collectives non-blocking
@ overhead-optimized implementation

@ special InfiniBand™ optimizations

@ progress thread

Torsten Hoefler, Peter Gottschling and Andrew Lumsdaine Non-Blocking Collectives

Problems and a Solution

Challenges for the Programer

@ rearrange the algorithm to overlap
@ implement and debug non-blocking communication
@ optimize overlap (e.g., message sizes)

Overcoming the Problems

@ semi-automatic approach for applications with independent
data

@ covers many applications that fit the map-reduce model

@ many scientific applications (e.g., parallel data processing,
Fourier transformation, parallel sorting, FEM methods, ...)

4

Torsten Hoefler, Peter Gottschling and Andrew Lumsdaine Non-Blocking Collectives

A typical Program - Parallel Compression

my_size = 0;

for (i=0; i < N/P; i++) {
my_size += compress(i, outptr);
outptr += my_size;

}

gather(sizes, my_size);

gatherv (outbuf, sizes);

No o bhowND =

Torsten Hoefler, Peter Gottschling and Andrew Lumsdaine Non-Blocking Collectives

Parallel Compression - Overlapping Version

for (i=0; i < N/P; i++) {
my_size = compress(i, outptr);
gather(sizes, my_size);
igatherv (outptr, sizes, hndl[i]);
outptr += my_size;
if(i>0) waitall(hndl[i—-1], 1);

}

waitall (hndI[N/P], 1);

ONO O WN =

Torsten Hoefler, Peter Gottschling and Andrew Lumsdaine Non-Blocking Collectives

Parallel Compression - Tiling the Communication

ONO O WN =

for (i=0; i < N/P/t; i++4) {

size = 0;

for (j=i; j < i+t; j++) {
my_size compress(ixt+j, outptr);
outptr += my_size;
size += my_size;

}

gather(sizes, size);

igatherv (outptr—size, sizes, hndl[i]);

if(i>0) waitall(hndl[i—-1], 1);

}
waitall (hndl[N/P/t], 1);

Torsten Hoefler, Peter Gottschling and Andrew Lumsdaine Non-Blocking Collectives

Parallel Compression - Adding a Window

for (i=0; i <
my_size = 0;
for (j=i; j < i+t; j++) {
my_size += compress(ixt+j, outptr);
outptr += my_size;
}
gather(sizes, my_size);
igather (outbuf, sizes, hndl[i]);
if (i >w) waitall(hndlI[i—w], 1);
}
waitall (hnld[N/P/t—w], w);

N/P/t; i++) {

- O OVWoO~NOOOTRAWN =

—_

Torsten Hoefler, Peter Gottschling and Andrew Lumsdaine Non-Blocking Collectives

Automatic Transformation

Templated Transformation
@ requires buffer, computation and communication functor
@ C++ template tiles loops and uses window
@ = programmer-directed overlap simplifies optimization

s Computation Buffer
W — input_reference + handle
+ operator() (int, Buffer) + tile_size()
53
writes]$
C icati BufferVector
M — output_reference ety —: Buffer
+ operator() (Buffer) + size()
+ wait(int, Buffer) + operator()
+ test(Buffer)

Two Examples

@ parallel compression
@ parallel 3d Fast Fourier Transformation

Torsten Hoefler, Peter Gottschling and Andrew Lumsdaine Non-Blocking Collectives

Parallel Compression

Communication Overhead (s)

0.6 0.2

MP| === NBC/pipeline
L o NBC/pipeline
05 M M - 0
=T 015
0.4 1 £
[
>
)
03 4 5 o
2
.0
0.2 1 é
£ 005
Q
0.1 8 o
0 120 96 32 16 0100 200 300 400 500 1000 1500 2000 250(

64
Number of PEs Tiling Factor

@ 128 2 GHz Opteron 246 nodes, InfiniBand™
® 146MiB data compressed with bzip2
® 21% speedup on 120 PEs

Torsten Hoefler, Peter Gottschling and Andrew Lumsdaine Non-Blocking Collectives

3d Fast Fourier Transformation

4 MP| m=mm NBC/pipeline
NBC/pipeline

0.1

0.05

FFT Communication Overhead (s)
o
o

FFT Communication Overhead (s
o
o
w

120 96 64 32 16 1 2 4
Number of PEs Window Size

@ 16% speedup on 120 PEs
@ weak scaling (4003, 4803, ..., 7208

Torsten Hoefler, Peter Gottschling and Andrew Lumsdaine -Blocking Collectives

Conclusions and Future Work

@ loop-tiling and introduction of a commmunication-window
to leverage non-blocking operations

@ proposed a template-driven optimization scheme to assist
the programmer

@ showed the usefulness and performance advantages with
two applications

@ LibNBC and templates available at:
http://www.unixer.de/NBC

Torsten Hoefler, Peter Gottschling and Andrew Lumsdaine Non-Blocking Collectives

Conclusions and Future Work

@ loop-tiling and introduction of a commmunication-window
to leverage non-blocking operations

@ proposed a template-driven optimization scheme to assist
the programmer

@ showed the usefulness and performance advantages with
two applications

@ LibNBC and templates available at:
http://www.unixer.de/NBC

Future Work

@ optimize more (real-world) applications
@ automatic parameter tuning

Torsten Hoefler, Peter Gottschling and Andrew Lumsdaine Non-Blocking Collectives

Backup Slides

Peter Gottschling and n-Blocking Collectives

Transformation in z Direction

Data already transformed in y direction

y X
1 block = 1 double value (3x3x3 grid)

Torsten Hoefler, Peter Gottschling and Andrew Lumsdaine Non-Blocking Collectives

Transformation in z Direction

Transform first xz plane in z direction

pattern means that data was transformed in y and z direction

Torsten Hoefler, Peter Gottschling and Andrew Lumsdaine Non-Blocking Collectives

Transformation z Direction

start MPI_lalltoall of first xz plane and transform second plane

cyan color means that data is communicated in the background

Torsten Hoefler, Peter Gottschling and Andrew Lumsdaine Non-Blocking Collectives

Transformation in z Direction

start MPI_lalltoall of second xz plane and transform third plane
A

SNSss

X
y
data of two planes is not accessible due to communication

Torsten Hoefler, Peter Gottschling and Andrew Lumsdaine Non-Blocking Collectives

Transformation in x Direction

start communication of the third plane and ...

y X
we need the first xz plane to go on ...

Torsten Hoefler, Peter Gottschling and Andrew Lumsdaine Non-Blocking Collectives

()
=
o

x
=

c
2
—

©

=

—

O
(=t

()

C

©

i

£

o

.qo.o moxomomomo”.‘mo”.q
AAAAARARA

” i
”.....u...‘.......““
ARBashaY
oedcdeded
PO
HoGRRRIY

bAAAAAANAS

AR

. so MPI_Wait for the first MPI_lalltoall!

and transform first plane (new pattern means xyz transformed)

-Blocking Collectives

2
2
S
c
<<
°
c
®
o
£
<=
9]
12)
5]
0]
8
©
a
k]
®
]
I
c
2
4
S
Qe

.éﬁ?%qé &
GO0

-Blocking Collectives

St
AR AR

Wait and transform second xz plane
first plane’s data could be accessed for next operation

C
9
—

(®]

o
=
()]

X
=

=
i)
—

©
£

—

o
(=t

(%2}

C

©

2
2
S
c
<<
°
c
®
o
£
<=
9]
12)
5]
0]
8
©
a
k]
®
]
I
c
2
4
S
Qe

Transformation in x Direction

wait and transform last xz plane

done! — 1 complete 1D-FFT overlaps a communication

Torsten Hoefler, Peter Gottschling and Andrew Lumsdaine Non-Blocking Collectives

