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Introduction

Features of non-blocking collective operations

@ hide full communication latency by overlapping
@ use the available bandwidth better

@ avoid detrimental effects of
pseudo-synchronization/process skew

@ make efficient use of the new semantics

LibNBC and MPI

@ implements all MPI collectives non-blocking
@ overhead-optimized implementation

@ special InfiniBand™ optimizations

@ progress thread
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Problems and a Solution

Challenges for the Programer

@ rearrange the algorithm to overlap
@ implement and debug non-blocking communication
@ optimize overlap (e.g., message sizes)

Overcoming the Problems

@ semi-automatic approach for applications with independent
data

@ covers many applications that fit the map-reduce model

@ many scientific applications (e.g., parallel data processing,
Fourier transformation, parallel sorting, FEM methods, ...)
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A typical Program - Parallel Compression

my_size = 0;

for (i=0; i < N/P; i++) {
my_size += compress(i, outptr);
outptr += my_size;

}

gather(sizes, my_size);

gatherv (outbuf, sizes);

No o bhowND =
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Parallel Compression - Overlapping Version

for (i=0; i < N/P; i++) {
my_size = compress(i, outptr);
gather(sizes, my_size);
igatherv (outptr, sizes, hndl[i]);
outptr += my_size;
if(i>0) waitall(hndl[i—-1], 1);

}

waitall (hndI[N/P], 1);

ONO O WN =
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Parallel Compression - Tiling the Communication

ONO O WN =

for (i=0; i < N/P/t; i++4) {

size = 0;

for (j=i; j < i+t; j++) {
my_size compress(ixt+j, outptr);
outptr += my_size;
size += my_size;

}

gather(sizes, size);

igatherv (outptr—size, sizes, hndl[i]);

if(i>0) waitall(hndl[i—-1], 1);

}
waitall (hndl[N/P/t], 1);
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Parallel Compression - Adding a Window

for (i=0; i <
my_size = 0;
for (j=i; j < i+t; j++) {
my_size += compress(ixt+j, outptr);
outptr += my_size;
}
gather(sizes, my_size);
igather (outbuf, sizes, hndl[i]);
if (i >w) waitall(hndlI[i—w], 1);
}
waitall (hnld[N/P/t—w], w);

N/P/t; i++) {

- O OVWoO~NOOOTRAWN =
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Automatic Transformation

Templated Transformation
@ requires buffer, computation and communication functor
@ C++ template tiles loops and uses window
@ = programmer-directed overlap simplifies optimization

s Computation Buffer
W — input_reference + handle
+ operator() (int, Buffer) + tile_size()
53
writes ]$
C icati BufferVector
M — output_reference ety —: Buffer
+ operator() (Buffer) + size()
+ wait(int, Buffer) + operator()
+ test(Buffer)

Two Examples

@ parallel compression
@ parallel 3d Fast Fourier Transformation
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Parallel Compression

Communication Overhead (s)

0.6 0.2

MP| === NBC/pipeline
L o NBC/pipeline
05 M M - 0
=T 015
0.4 1 £
[
>
)
03 4 5 o
2
.0
0.2 1 é
£ 005
Q
0.1 8 o
0 120 96 32 16 0100 200 300 400 500 1000 1500 2000 250(

64
Number of PEs Tiling Factor

@ 128 2 GHz Opteron 246 nodes, InfiniBand™
® 146MiB data compressed with bzip2
® 21% speedup on 120 PEs
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3d Fast Fourier Transformation
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@ 16% speedup on 120 PEs
@ weak scaling (4003, 4803, ..., 7208
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Conclusions and Future Work

@ loop-tiling and introduction of a commmunication-window
to leverage non-blocking operations

@ proposed a template-driven optimization scheme to assist
the programmer

@ showed the usefulness and performance advantages with
two applications

@ LibNBC and templates available at:
http://www.unixer.de/NBC
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Conclusions and Future Work

@ loop-tiling and introduction of a commmunication-window
to leverage non-blocking operations

@ proposed a template-driven optimization scheme to assist
the programmer

@ showed the usefulness and performance advantages with
two applications

@ LibNBC and templates available at:
http://www.unixer.de/NBC

Future Work

@ optimize more (real-world) applications
@ automatic parameter tuning
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Backup Slides
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Transformation in z Direction

Data already transformed in y direction

y X
1 block = 1 double value (3x3x3 grid)
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Transformation in z Direction

Transform first xz plane in z direction

pattern means that data was transformed in y and z direction
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Transformation z Direction

start MPI_lalltoall of first xz plane and transform second plane

cyan color means that data is communicated in the background
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Transformation in z Direction

start MPI_lalltoall of second xz plane and transform third plane
A

SNSss

X
y
data of two planes is not accessible due to communication
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Transformation in x Direction

start communication of the third plane and ...

y X
we need the first xz plane to go on ...
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. so MPI_Wait for the first MPI_lalltoall!

and transform first plane (new pattern means xyz transformed)

-Blocking Collectives
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Wait and transform second xz plane
first plane’s data could be accessed for next operation
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Transformation in x Direction

wait and transform last xz plane

done! — 1 complete 1D-FFT overlaps a communication
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