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Abstract—Fault-tolerance has been identified as a major
challenge for future extreme-scale systems. Current predictions
suggest that, as systems grow in size, failures will occur more
frequently. Because increases in failure frequency reduce the
performance and scalability of these systems, significant effort has
been devoted to developing and refining resilience mechanisms
to mitigate the impact of failures. However, effective evaluation
of these mechanisms has been challenging. Current systems are
smaller and have significantly different architectural features
(e.g., interconnect, persistent storage) than we expect to see
in next-generation systems. To overcome these challenges, we
propose the use of simulation. Simulation has been shown to
be an effective tool for investigating performance characteristics
of applications on future systems. In this work, we: identify the
set of system characteristics that are necessary for accurate per-
formance prediction of resilience mechanisms for HPC systems
and applications; demonstrate how these system characteristics
can be incorporated into an existing large-scale simulator; and
evaluate the predictive performance of our modified simulator.
We also describe how we were able to optimize the simulator for
large temporal and spatial scales–allowing the simulator to run
4x faster and use over 100x less memory.

I. INTRODUCTION

Fault-tolerance has been identified as a major challenge
for exascale-class systems. As systems grow in scale and
complexity, failures become increasingly likely; impacting
performance and scalability. Current predictions suggest that
for next-generation systems the mean time between failures
could fall to hours, or even minutes [1]. As failure rates
increase, more time is spent preparing for and recovering
from failures and less time is spent doing (useful) application
work. Given these dire predictions and the dynamics of fault-
tolerance techniques, significant effort has been and is being
devoted to investigations aimed at improving system resilience
and related mechanisms.

Effective evaluation of fault-tolerance strategies on
extreme-scale systems has been difficult for several reasons.
Most significantly, researchers often need to study machines
that either: are larger than those that are currently available;
or have hypothetical architectures or configurations. As a
result, existing systems are not sufficient to evaluate the
performance impact of fault tolerance techniques on next-
generation extreme-scale systems. Tests performed on these
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systems cannot accurately account for the impact of scale
and may not be able capture the impact of architectural
features (e.g. interconnect technologies) whose performance
varies dramatically from current systems. Second, the largest
and most advanced current machines generally are not ac-
cessible to most researchers. Third, analytic techniques for
predicting performance in future systems are lacking. While
good models for coordinated checkpointing exist [2], [3], we
lack analytical tools for predicting the performance impact of
many other fault tolerance mechanisms (for example, message-
logging [4], communication-induced checkpointing [5] and
hierarchical checkpointing [6]).

The broader objective of this project is to study general
fault-tolerance techniques and their impacts on application
performance. However, for the work presented in this paper, we
focused on checkpoint/restart. Checkpoint/restart (or rollback
recovery) is the technique most commonly used on today’s
systems. During normal operation, checkpoint/restart proto-
cols [7] periodically record the state and address space of all
application processes to stable storage devices. When a process
fails, a new incarnation of the failed process is recovered
from the most recent checkpoint – therefore limiting lost
work. For distributed applications, coordinated checkpointing
pauses all processes to record a globally consistent snapshot of
the application’s state. Uncoordinated checkpointing protocols
avoid synchronization overheads and I/O contention by allow-
ing each process to checkpoint independently. Uncoordinated
checkpointing protocols also avoid rolling back non-failed pro-
cesses. While there have been a number of studies which show
that the overheads of checkpoint/restart could be prohibitively
expensive for future extreme-scale systems [8]–[10], there has
been a great effort in the research community to optimize these
rollback/recovery protocols to ensure they remain viable [4],
[9], [11]–[17].

Researchers have shown that simulation is an effective tool
for investigating the performance characteristics of applica-
tions on current and hypothetical future systems [9], [18]–[20].
In this paper, we focus on efficient simulation of the impact
of coordinated and uncoordinated checkpoint/restart protocols
on application performance. Our approach is motivated by
two observations: (1) simulation can be very computationally
expensive, and simulation efficiency is maximized by con-
sidering only the features of the computing environment that
are relevant to the performance impact of checkpoint/restart;
and (2) the coarse-grained operation of checkpoint/restart (on
the order of minutes to hours) allows us to forego the over-
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heads and complexities of cycle-accurate simulation. Based
on these observations, we hypothesize that like operating
system noise [21], [22], resilience mechanisms (e.g., writing
checkpoints, restarting after a failure or redoing lost work) can
be modeled as CPU detours. A CPU detour is a number of CPU
cycles that are used for something other than the application.

In this work, we provide a principled approach to simu-
lating checkpoint/restart based fault-tolerance for large-scale
HPC systems in a failure-prone environment. Based on this
approach, we also present an efficient and accurate framework
for simulating the performance impact of coordinated and
uncoordinated checkpoint/restart protocols for existing and
hypothetical extreme-scale systems and applications. Specific
contributions of the work include:

• A survey of system, application, and resilience charac-
teristics required for accurate and efficient simulation
of extreme-scale workloads in a failure-prone environ-
ment;

• A prototype checkpoint/restart simulation framework,
based on functional and performance-oriented exten-
sions to LogGOPSim [20] which decrease memory
consumption by over 100x and runtime by 4x;

• A validation of our hypothesis that resilience over-
heads can be modeled as CPU detours; and

• An evaluation of the predictive performance of our
simulation approach showing an error of less than
3% against an analytic model for checkpointing in a
failure-free environment.

The organization of this paper is as follows: in the next
section, we discuss the relevant system, application, failure
and resilience characteristics that must be considered by our
framework. Additionally, this section offers more background
on checkpoint/restart protocols and shows how they factor
into our considerations. Section III provides an overview of
LogGOPSim, the simulator that serves as the basis of our
prototype. In Section IV, we describe the functional and
performance-oriented extensions we made to LogGOPSim to
improve its ability to simulate coordinated and uncoordinated
checkpoint protocols at our desired time and space scales.
In Section V, we evaluate the impact of our performance
optimizations and validate the accuracy of the extended simu-
lator for checkpoint/restart. We then discuss related works in
Section VI, and finally, we summarize the impact our current
contributions and plans for future work in Section VII.

II. CONSIDERATIONS FOR RESILIENCE AT SCALE

Toward the goal of efficient, large-scale simulations that
allow us to evaluate resilience techniques, we must identify the
relevant hardware and software characteristics that impact sim-
ulation performance. We now describe our principled approach
to identifying these characteristics: in turn, we consider system
features, application behavior, fault-tolerance mechanisms and
then the impact of failures.

A. Hardware Characteristics

Our objective is to develop a simulation framework that
will enable us to evaluate resilience techniques on current and

future systems. The simulator must be able to accurately and
efficiently model the impact of faults and fault tolerance on ap-
plication performance given the: (a) temporal scale, (b) spatial
scale and (c) architectural features of next-generation extreme-
scale systems.

1) Temporal Scale: Faults and fault tolerance mechanisms
typically operate at large time-scales (for example, minutes,
hours or even weeks). As we stated in the introduction,
projected mean-time-to-interrupt (MTTI) on the first exascale
machines are on the order of hours. Additionally, many of the
target applications are long running, and the behaviors of the
applications as well as the systems are expected to be dynamic.
As a result, simulating resilience requires a simulator that can
model relatively long periods of application execution.

2) Spatial Scale: The largest current HPC systems are
comprised of tens of thousands of nodes. If current predictions
hold, the first exascale system may be nearly an order of
magnitude larger. Our simulator must be capable of modeling
the behavior of systems that are much larger than any that are
currently available.

3) Architectural Features: The first exascale system is
not projected to appear until sometime after 2020 [23]. In
the intervening span of years, we expect to see advances in
interconnect and persistent storage technologies. Our simulator
should also allow us to evaluate the impact of these advances
on resilience mechanisms.

B. Application Characteristics

Our simulator must be capable of accounting for the per-
formance aspects of the applications behavior. Prior research
and experience has shown that it may be sufficient to do this at
the course granularity of the target application’s computation,
specifically: its communication graph, a description of how
processes communicate with each other; its computation time,
the time between communication events; and its dependencies,
a partial ordering of all communication and computation
events. In the next section, we show how these characteristics
interplay with resilience mechanisms.

C. Impact of Checkpoint/Restart Mechanisms

In checkpoint/restart protocols [24], the application or
system saves snapshots of application state, checkpoints, to
persistent storage. In coordinated checkpointing, all processes
checkpoint at the same time (in order to mark a consistent
global state), and in the event of a process failure, all processes
must revert to their most recent checkpoint. While coordi-
nated checkpoint/restart is the predominant approach, it suffers
several limitations including increased overhead with system
size and global process perturbations during checkpoint and
recovery phases. Uncoordinated checkpoint/restart protocols,
in which processes can checkpoint and recover independently,
address these limitations – though they introduce new ones.
In addition to these coarse protocols, many optimizations
have been proposed including: diskless [25]–[27], hierarchi-
cal [6], [28] communication-induced [29] and incremental
checkpointing [14], [30]. Despite the proliferation of resilience
mechanisms, we lack effective methods for evaluating the true
costs of each of these approaches on exascale systems [31].



Given the large temporal and spatial scales of the simulated
systems that we wish to consider, effective simulation demands
that we eliminate unnecessary detail. Existing work on mod-
eling and simulation of coordinated checkpointing provides
us with a guidepost on the required components and level of
details [2], [3], [32].

In a failure-free environment, we can accurately model
the impact of coordinated checkpointing by considering: the
checkpoint time, amount of time that checkpointing activities
prevent the application from executing, the checkpoint interval,
time between consecutive checkpoints, and work time, the
amount of time that the application would execute in the
absence of checkpointing activities. Checkpoint time may need
further refinement potentially including a process coordination
phase, the checkpoint calculation phase during which time the
checkpoint data is computed, the checkpoint commit time to
write the checkpoint to stable storage and the resumption phase
to continue normal application execution.

For approaches like uncoordinated checkpointing that lack
explicit coordination, we also need to consider the appli-
cation characteristics like communication patterns described
previously. Consider a simple uncoordinated checkpointing
strategy where each process generates checkpoints strictly
according to local policies. Communication dependencies may
cause checkpointing activities in one process may perturb the
behavior and performance of other processes. For example,
if the recipient of a message is currently busy generating a
checkpoint then reception of the message may be delayed
until the checkpoint is complete. Further, all actions that are
dependent on the reception of the message will also be delayed.
Additionally, many asynchronous resilience techniques use
message logging [24] to mitigate recovery costs. Accounting
for this activity also requires that we incorporate information
about communication patterns into our simulation.

D. Impact of Failures

Meaningful evaluation of resilience mechanisms necessar-
ily includes the introduction of failures. Initially, we consider
only fail-stop failures. To accurately simulate the impact of
the occurrence of failures on application performance, at a
minimum, we need to consider: (a) failure characterization;
(b) restart time; and (c) recovery description.

1) Failure Characterization: To evaluate the impact of
faults in the context of a resilience mechanism, we require
a description of how failures occur in the simulated system.
Although this could be expressed in many ways, the most
common and succinct description of failure occurrences is in
the form a probability distribution.

2) Restart Time: When a failure occurs, some time elapses
before any computation can be undertaken on the failed node.
To account for this fact, we need to know the time between
the occurrence of a failure and the moment when the failed
node can resume computation. This includes time to restart
failed nodes and processes and to read checkpoints from
persistent storage, but does not include any time for recovery.
For example, in the case of coordinated checkpointing, the end
of the restart interval coincides with the beginning of rework
(i.e., redoing work lost due to the failure).

3) Recovery Model: When the failed node has restarted
and is able to resume computation, there is typically some
amount of work that needs to be redone before the system
can again make meaningful forward progress. For example, in
coordinated checkpointing, all of the computation between the
last valid checkpoint and the occurrence of the failure needs
to be redone. Typically, each resilience mechanisms presents
a different method for recovering from a failure. Therefore, to
accurately account for the cost of recovering from a failure,
we need a model for each resilience mechanism that allows
us to determine the amount of time that will elapse before the
application resumes forward progress.

III. LOGGOPSIM

In this section, we describe LogGOPSim [20], [33], the
simulator we extend to meet the requirements prescribed by the
considerations in Section II. We choose LogGOPSim because
it is shown to be accurate, freely available and fast enough to
support large-scale simulations while already capturing many
of the application and hardware characteristics we require (as
we discuss). As described in Section IV, functionally, we
simply needed to extend it to account for checkpoint/restart
and failure recovery.

A. Simulating Application Characteristics

LogGOPSim is an application simulator based on the
popular LogP model [34]. LogP and its variants have a long
history of accurately predicting the performance of large-scale
parallel applications and algorithms. The simulation frame-
work consists of three major components: a trace collector
(liballprof), a schedule generator (SchedGen), and an
optimized discrete-event simulator (LogGOPSim).

The trace collector records the actual MPI communication
of the target application. The schedule generator uses the
MPI traces to generate a schedule that captures the required
characteristics of control- and dataflow of the application while
preserving the happens-before relationship of events within the
application. The discrete-event simulator reads the generated
schedule, performs a full LogGOPS simulation and reports the
completion time of each process.

This validated simulation framework was developed to
simulate applications at scale, and has the ability to extrapolate
from traces collected on smaller scale systems. This allows
for the simulation of platforms larger than those currently
in existence while keeping the same communication char-
acteristics (equivalent to weak-scaling of the application).
Although the extrapolated trace may not precisely represent
the communication pattern on the larger system, the impact of
this inaccuracy has been shown to be small [20] if extrapolation
factors are bounded. This framework has been used to evaluate
the performance of collective communications [35] and the
impact of OS noise [22] on large-scale applications. A detailed
study of the simulation framework and its functionality is
presented in [20].

B. Simulating Hardware Characteristics

Because LogGOPSim was initially developed to model
application performance in large-scale systems [22], it al-
lows us to model systems with the characteristics described



Required to Model Parameter Name Parameter Description

All
Checkpointing

COORDINATION TIME time for processes to coordinate the taking of a checkpoint
CHECKPOINT COMPUTATION time to compute a checkpoint
CHECKPOINT COMMIT TIME time to write a checkpoint to stable storage

CHECKPOINT INTERVAL time between consecutive checkpoints
WORK TIME time-to-solution without failures or resilience mechanisms

Uncoordinated
Checkpointing

COMMUNICATION GRAPH details of inter-process communication
COMPUTATION EVENTS failure-free computation pattern of the application

DEPENDENCIES partial ordering of communication and computation events

Failure
Occurrences

FAILURE CHARACTERIZATION rate and distribution of failures
RESTART TIME time to read a checkpoint from stable storage after a failure

RECOVERY MODEL a model of the time required before forward progress can resume
TABLE I. SUMMARY OF THE PARAMETERS NEEDED FOR ACCURATE SIMULATION OF HPC APPLICATIONS IN A FAILURE-PRONE SYSTEM.

in the preceding section. First, it provides the simulation
scale necessary for evaluating checkpointing techniques. For
a single collective operation, LogGOPSim can simulate up
to 10,000,000 processes. For more general workloads, it is
capable of simulating more than 64,000 processes.

Second, with some minor modifications, LogGOPSim is
also capable of simulating the necessary temporal scale. The
initial implementation of LogGOPSim was intended for com-
paratively short simulations. As a result, the temporal scope
of the simulations that can be executed by the unmodified
simulator is significantly limited by the size of the simulating
system’s memory. To achieve the temporal scale that we
needed with reasonable quantities of system memory, we made
some simple modifications to LogGOPSim. These modifica-
tions are discussed more fully in a subsequent section.

Third, LogGOPSim also allows us to model the impact
of emerging interconnect technologies. Working within the
LogGOPS model, we can simulate the impact of many changes
in network behavior on resilience techniques by modifying
the model’s parameters. In addition, as we discuss more
fully below, our model of resilience mechanisms allows us
to evaluate how improvements to persistent storage systems
(e.g., the widespread availability of local SSDs) will affect the
performance of resilience mechanisms.

IV. EXTENDING LOGGOPSIM FOR LARGE SCALE
RESILIENCE RESEARCH

A. Simulating Failures and Resilience

The key insight that allows us to use LogGOPSim is that
resilience mechanisms (e.g., writing checkpoints, restarting
after a failure, redoing lost work) can be modeled as CPU
detours. A CPU detour is a number of CPU cycles that are
used for something other than the application, similar to OS
noise [21], [22]. One key difference between OS noise and
these resilience detours is that resilience “noise” events may
need to be replayed synchronously with the application com-
munication/computation pattern rather than asynchronously as
is typical of OS noise.

We model resilience in LogGOPSim using a new library,
libsolipsis, that generates CPU detours based on a speci-
fied resilience mechanism and the application’s communication
pattern. Similar to liballprof, the library links to the

application using the MPI profiling interface, intercepting
all MPI calls. The output of this library is a per-process
detour file that can be provided as input to LogGOPSim. The
detour file contains the timestamp and the duration of each
of the resilience mechanism detours. The duration of detours,
Tdetour, that represent checkpoints are computed using the
following expression.

Tdetour = Tcoord + Tckpt + Tcommit

where

Tcoord = time to coordinate the taking of a checkpoint
Tckpt = time to compute a checkpoint

Tcommit = time to commit the checkpoint to stable storage

We also generate detours to represent the impact of node
failure and optimistic message logging. In the case of failure,
the duration of the detour includes both the restart and rework
time on the failed node; libsolipsis computes the rework
time by calculating the amount of simulated time that has
elapsed since the previous checkpoint. For optimistic message
logging, libsolipsis calculates the time required to write
the message to the log given a bandwidth to stable storage.

For the purposes of this work, we focus on the libraries’
ability to emulate performance of two popular resilience mech-
anisms: coordinated checkpointing and asynchronous check-
pointing with message logging [7].

We focus on these on these two methods because coordi-
nated checkpoint/restart is currently the most popular approach
and asynchronous checkpointing has been proposed as a low-
overhead checkpoint option for future extreme-scale systems.

For asynchronous checkpointing with message logging, our
library generates detour files that contain the timestamp and
the duration of the local checkpoints. Because no coordination
is required, Tcoord = 0. Also, for simplicity, we currently
assume that Tckpt = 0. For pessimistic message logging [7],
we modify the CPU overhead parameter (o in the LogGOPS
model) for send operations (os) to account for the log write to
stable storage. The LogGOPSim simulator uses a single detour
file to simulate the local checkpoints in the system; to model
the asynchronous nature of these checkpoints, each node starts
at a different location in the file.



For coordinated checkpoint/restart, the library generates a
detour file that contains the timestamp and the duration of each
checkpoint taken by the application. For this work, we have as-
sumed bulk-synchronous parallel (BSP) applications. Because
applications of this type are largely self-synchronizing, we set
Tcoord = 0. And again, for simplicity, we are currently assum-
ing that Tckpt = 0. When the simulation is run, we use the
“--noise-cosched” option of the LogGOPSim simulator.
This option ensures that the detour file is co-scheduled on all
processors, thereby simulating coordinated checkpoint/restart.
We also force each process to start at the beginning of the
detour file to ensure proper timing of checkpoints.

To simulate failure, the library generates failure times
for each node from a random distribution based on a per-
node mean time between failure (MTBF). When a failure is
generated, the library adds a detour event that includes the the
time required to restart from the last checkpoint and the time
required for rework (i.e., the time since the last checkpoint).
The LogGOPSim simulator will ensure that all communication
in the trace file that depends on the failed node will be delayed
until the node has “recovered”.

B. Optimizing LogGOPSim for Scale

To simulate periods of execution long enough to be mean-
ingful for fault tolerance (i.e., application wallclock times long
enough that application failures are expected) while keeping
traces manageable, we extended LogGOPSim to support au-
tomatic execution trace extrapolation. Because LogGOPSim
was originally designed to simulate single collective operations
and short application traces it assumed a comparatively small
input dataset. In our use cases, the extent to which the existing
LogGOPSim could scale up the length of simulated execution
and the number of simulated nodes was severely limited by
the amount of available memory.

LogGOPSim, as originally published, requires a pre-
processing step which performs the extrapolation to generate
communication data for all simulated nodes. The simulator
binary then attempts to map this file into virtual memory and
use it directly as input data about simulated events. The size
of this file is proportional to both the length of the simulated
execution and the number of simulated nodes. As a result,
simulating long running applications or large-scale systems
requires very large data sets. Additionally, when collecting data
at varying scales, a user would be required to re-run the entire
toolchain from the trace data to the simulator with different
parameters.

We re-wrote the input handling portion of LogGOPSim
to include two critical changes. First, the modified simulator
performs extrapolation in main memory as needed, rather than
as a pre-processing step on disk. The traces generated from
profiling an MPI application are used directly as input, and are
proportional in size to the original profiled node count, rather
than the extrapolated node count. Second, the simulator works
on a small sliding window of input data, rather than mapping
it in all at once. The code loads and extrapolates data from the
traces at fine granularity, loading only a small portion of the
trace file at a time. Because of these changes, the simulator’s
memory usage, shown in Fig. 1, remains constant independent
of input trace size. In other words, the same amount of memory

would be required to simulate a minute, hour, day, week or
month of application execution time!

In theory, an operating system should be able to perform
this type of efficient memory allocation when using a system
call such as mmap. However, on the Linux 2.6.32 systems that
we used, windowing the input data at the application level
allowed for much greater scales before the system started to
thrash.

V. EVALUATING OUR LOGGOPSIM EXTENSIONS

A. Correctness of the Extensions

We have verified with a careful comparison of the se-
quences of simulation events generated by each of the two
simulators that our modified LogGOPSim produces exactly the
same sequence and timing of simulated events as the original
validated LogGOPSim tools. Moreover, the two simulators
produce identical simulated runtimes.

B. Evaluating Performance Enhancements

In this section, we evaluate the performance impact of
our modifications to LogGOPSim. We consider two important
metrics to evaluate our changes, maximum memory require-
ment and simulation performance in events/second, and then
finally examine overall wallclock time for simulating the same
problem

1) Memory Usage: With our changes, the amount of disk
space needed is no longer proportional to the node extrapo-
lation factor, and the amount of RAM needed is no longer
proportional to the length of the trace data. This enables
simulation of long executions of many nodes: for the traces
used here, memory usage decreased dramatically as shown in
Fig. 2. Memory usage dropped by a factor of 20 for HPCCG,
60 for LAMMPS, and 900 for CTH, with the magnitude of
the drop related to an applications communication pattern and
the greatest distance between the initiation of a non-blocking
operation and waiting for its completion. This increase of
available memory allowed us to simulate over 12 minutes of
HPCCG at 256K nodes and over 7 minutes of LAMMPS at
256K nodes in a short amount of time, as shown in Figures
2(a) and 2(b), respectively.

2) Simulation Performance: Fig. 3 and Fig. 4 show the
increase in performance for our simulation framework. We
show this increase both in terms of event per second of the
simulator (Fig. 3) and the wall clock time to perform the
simulation (Fig. 4). We see from these figures, a factor of
2.5 to 4X increase in performance from our modifications.
We believe that the substation performance benefits stem
from the smaller cache footprint of our implementation. We
note that simulation performance decreases slightly as the
number of simulated nodes increases. We are working on
characterizing this decrease. However, we conclude that the
achieved performance is sufficient for our purposes.

C. Validating Checkpoint Simulation

In this section, we present the data we collected to validate
our simulator. We use both analytic models and small-scale
testing to ensure that our simulator accurately models the
impact of resilience mechanisms in failure-free and failure-
prone environments.
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Fig. 1. Comparison of the memory consumption required to simulate a system running one of three applications using the original LogGOPSim simulator and
our modified version as a function of input trace length. Our windowing protocol decouples memory usage from trace length. As a result, with a fixed memory
budget, our modifications allows us to simulate much longer periods of applcation execution than was possible with the original simulator.
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Fig. 2. Comparison of the memory consumption required to simulate a system running one of three applications using the original LogGOPSim simulator
and our modified version. With a fixed memory budget, our modifications allows us to simulate systems that are significantly larger than could be simulated
with the original simulator. The memory consumption decrease varies by communication pattern and varies from 20X for HPCCG to 900X for CTH.

1) Failure-Free Analytic Model of Coordinated Checkpoint-
ing: We begin with a simple analytic model for coordinated

checkpointing. Equation 1 models application performance in
terms of its wall clock time-to-solution, Tw, in a failure-free
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Fig. 3. Comparison of simulator performance, measured in events/second, when simulating a system running one of three applications using the original
LogGOPSim simulator and using our improved version. Due to the memory requirements of the original simulator, we were unable to obtain results for
simulations of large-scale systems using the original simulator. The simulation performance increase varies by application communication pattern and varies
from 2.5X for LAMMPS and CTH to 4X for HPCCG.
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Fig. 4. Comparison of simulator runtime, measured in seconds (lower is better), for the original LogGOPSim simulating systems running three different
applications using simulator and using our improved version. Due to the memory requirements of the original simulator, we were unable to obtain results
for simulations using the original simulator for large-scale systems. Similar to Fig. 3, the simulation wallclock speedup varies by application; from 2.5X for
LAMMPS and CTH to 4X for HPCCG.

environment.
Tw = Ts +

Ts
τ
× δ (1)

where Tw is the wall clock time, Ts is the solve time of
the application without any resilience mechanism, τ is the
checkpoint interval [2], and δ is the checkpoint commit time
(time to write one checkpoint). For coordinated checkpointing
to shared stable storage, we can express the checkpoint commit
time as:

δ =
N ∗ ||cavg||

β
(2)

where N is the number of nodes, ||cavg|| is the average check-
point size per node, and β is the aggregate write bandwidth to
stable storage.

In Figures 5(a) and 5(b), we compare the output of this
model to the output of our simulator. The times-to-solution
for CTH predicted by the simulator are very accurate, about
3% greater than the model’s predictions. More importantly,
the simulator closely matches scaling trends predicted by
the model. Moreover, the simulated times-to-solution for
LAMMPS are within 1% of the analytic model. On the whole,
these data suggest that the simulator is accurately modeling
how the impact of resilience mechanisms scales with system
size.

2) Small-scale testing: To further validate our simulator,
we compared it against the results of small-scale tests on
real hardware. The simulator provides us with fine-grained
control over the checkpoint interval and duration. To mimic
this degree of control on real hardware, we constructed an MPI

profiling library, libchkpt. This library, based on the the
libhashckpt incremental checkpointing library [14], also
has the ability to take both full coordinated and uncoordinated
checkpointing techniques, in additional to its incremental co-
ordinated techniques. The full coordinated checkpointing func-
tionality ensures all checkpoints are taken simultaneously on
each node, while the uncoordinated approach takes checkpoints
independently. While taking checkpoints, the CPU is taken
from the application until the checkpoint commit time has
completed.

For our purposes here, we focus on validating the failure-
free case. Fig. 6 and Fig. 7 show the results of this validation.
These figures compare the total wall clock time simulated
by LogGOPSim and measured with libchkpt running on
our test platform. For reference, each figure also includes
the total wall clock time in the absence of any failures.
Note the performance of CTH in Fig. 6 exhibits a distinct
sawtooth pattern. This pattern is an artifact of how CTH
scales the computation as nodes counts increase. The simulator
accurately predicts this complex sawtooth pattern. We also see
in this figure the simulators error in prediction. We also note
that the predictive performance of the simulator is less accurate
for CTH in comparison to LAMMPS, with the error in time
to solution bounded by 20%. This is due to the simulator
not accounting for OS noise on the node and limitations of
the network model used. In our testing, OS interference is
not being generated to simplify analysis, though the simulator
allows for such accounting. This OS interfere has been shown
to greatly influence impact CTH performance [21]. Also,
though the LogGOPSim simulator is capable of sophisticated
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Fig. 5. Validation of the simulator against the simple analytic model described in Equation 1 for coordinated checkpointing to stable storage in a failure-free
environment for CTH and LAMMPS. The model and the simulator use identical values for the Ts (for each application), τ , and δ. The simulation error is less
than 3% for CTH and less than 1% for LAMMPS across the tested node count range.
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Fig. 6. Performance of LogGOPSim simulation against a coordinated and uncoordinated checkpointing library for CTH. The simulator and libchkpt use
identical values for Tw (failure free performance), τ (checkpoint interval), and δ (checkpoint commit time). The simulation error in this figure is less than 20%,
with this differences attributed to platform features not being simulated. For example, interference from the OS is not being generated in this case to simplify
analysis. This OS interfere has been shown to greatly influence impact CTH performance [21].

network models, in this work we use a simple network model
which does not account for network contention. As CTH does
a fair amount of bulk data transfer, network contention can be
an issue.

Overall, these figures show that LogGOPSim closely tracks
the results measured with libchkpt. For all the configura-
tions that we examined, the absolute wall clock time simu-
lated by LogGOPSim is within 20% of the measured values.
More importantly, LogGOPSim closely mimics the trends we
observe with libchkpt even as performance deviates from
performance on actual hardware.

VI. RELATED WORK

Although fault tolerance for HPC has been a very active
area of research, few tools exist that allow us to project
behavior beyond small-scale systems. As we discussed above,
simulating fault tolerance techniques requires an appropriate
level of detail about the communication of the target ap-
plication. Without an accurate representation of application
communication, we cannot accurately simulate some fault
tolerance techniques (e.g., asynchronous checkpointing). Too
much detail unnecessarily reduces simulator performance. The
application simulators for fault tolerance that do exist tend
to fall to either extreme; either they are not communication-
accurate or they simulate communication in much greater

detail than believed necessary.

In [32], Riesen et al. present a simulator that can model
the impact of node failure on application performance in
the context of traditional coordinated checkpoint/restart. This
simulator can also account for process replication. Tikotekar
et al. take a similar approach in [36]. They present a simulator
that models coordinated checkpointing and can also simulate
fault prediction and process migration. While these tools have
been shown to be effective for their stated purposes, they are
not communication-accurate. As a result, they are unable to
account for fault tolerance techniques whose performance may
be influenced by communication patterns.

At the other extreme is xSim [37]. xSim builds on the MPI
profiling interface and interposes itself between the application
and the MPI library. As a result, the simulator is able to run
unmodified HPC applications. Scaling is achieved by oversub-
scribing the nodes of the system used for validation. While
this provides us with a tremendous amount of detail about
the performance of the application, it imposes a significant
cost. Due to limits on the degree of oversubscription, large-
scale systems are required to simulate systems that approach
extreme-scale. Moreover, as the size of the simulated system
grows and the degree of oversubscription therefore increases,
the time required to simulate the system grows dramatically.
Lastly, this oversubscription could place significant limits on
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Fig. 7. Performance of LogGOPSim simulation against an coordinated and uncoordinated checkpointing library for LAMMPS. The simulator and libchkpt
use identical values for Tw (failure free performance), τ (checkpoint interval), and δ (checkpoint commit time). The simulation error in this figure is shown to
be less than 5% in the range tested.

the size of the problem that can be solved as the memory
for each simulated node must exist in the memory of one
physical node. In contrast, our approach allows us to simulate
fault tolerance mechanisms for systems comprised of tens or
hundreds of thousands of nodes on very modest hardware (e.g.,
a single node). In some cases, this simulation completes in less
time than it would take to run the application itself, but with
the less detail of the computation.

Boteanu et al. present a fault tolerance extension to an
existing simulator in [38]. However, they target a datacenter
environment where each job is a discrete unit that is assigned
to a single processing element. As a result, their simulator does
not map well to HPC workloads.

Finally, SST/macro [39], [40] is a coarse-grained,
lightweight simulator designed to simulate the performance of
existing and future large-scale systems. By collecting traces
of application execution, SST/macro is able to simulate the
application’s computation and computation patterns at scales
and on hardware that does not yet exist. However, SST/macro
does not currently account for the impact of CPU detours (OS
jitter). As a result, because the foundation of our approach
is based on the observation that resilience can be modeled as
CPU detours, we concluded that SST/macro was not a suitable
starting point for our investigation.

VII. CONCLUSION & FUTURE WORK

We presented in this work, a new and promising ap-
proach to simulation at scale of fault-tolerance mechanisms
based on the checkpoint/restart model. We identified a set of
platform, application, and resilience characteristics required
for accurate and efficient simulation; described a prototype
framework based on extensions to a validated and freely-
available application simulator implementing the LogP model;
shown how resilience processing overheads can be effectively
modeled as CPU detours; and demonstrated empirically that
our approach accurately predicts, with an error of less than
3%, the impact of resilience mechanisms. Our modifications
to the LogGOPSim simulator greatly decreased its memory
consumption by a factor of 100 or greater and runtime by a
factor of 4. This performance increase allows us to evaluate
potential resilience solutions at meaningful application and
temporal scales, while also enabling the modeling of future
interconnection and storage technologies.

The design space for evaluating resilience methods in large-
scale HPC applications is young and still evolving. While our
simulation framework has expanded that space in new and
useful ways, several areas for future work remain. Among
these, we intend to extend the framework to provide failure
injection for large-scale simulation. Additional failure types
should also be modeled, e.g. corruption of application memory
or network traffic. We understand that this may mean re-
evaluating the granularity of our simulation to ensure proper
and effective simulation. We are also investigating mechanisms
to integrate both coarse- and fine-grained simulation for fail-
ures. This will allow us to use coarse-grained simulation in
areas where failures do not occur, and fine-grained simulation
when failures or other interesting events do occur. We also plan
to address support for additional resilience mechanisms such
as hierarchical checkpointing, replication-based approaches,
process migration and cloning, as well as integration with on-
going standards efforts like the current fault tolerance proposal
put forth in the MPI forum [41]. Finally, we plan to further
investigate performance limitations of our current simulation
framework, including analyzing the benefit of parallelizing the
simulator.
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