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Abstract. Optimized implementations of blocking and nonblocking col-
lective operations are most important for scalable high-performance ap-
plications. Offloading such collective operations into the communication
layer can improve performance and asynchronous progression of the op-
erations. However, it is most important that such offloading schemes
remain flexible in order to support user-defined (sparse neighbor) col-
lective communications. In this work, we describe an operating system
kernel-based architecture for implementing an interpreter for the flexi-
ble Group Operation Assembly Language (GOAL) framework to offload
collective communications. We describe an optimized scheme to store
the schedules that define the collective operations and show an exten-
sion to profile the performance of the kernel layer. Our microbenchmarks
demonstrate the effectiveness of the approach and we show performance
improvements over traditional progression in user-space. We also discuss
complications with the design and offloading strategies in general.

1 Introduction

The Message Passing Interface (MPI) standard [12] is the de-facto standard for
implementing today’s large-scale high-performance applications. Part of MPI’s
success is it’s high portability, not only from a correctness, but also from a per-
formance perspective. This is achieved by defining several high-level collective
communication operations that specify communication primitives on groups of
processes instead of process pairs. The implementation of such collective opera-
tions can now be optimized to the particular machine architecture and network
topology. Several non-trivial algorithms have been developed to optimize those
group communications, e.g., [2, 16].

A recent addition to the MPI standard (in the upcoming MPI-3.0 standard)
builds upon this success and introduces nonblocking versions of all MPI collective
operations [7]. Nonblocking collective operations allow the application to perform
computations while the communication (and synchronization) is performed “in
the background”.

Different software implementation options have been explored for different
network architectures [6] but the major problem, how to progress the collective



algorithm efficiently, remains open. This problem exists because most advanced
collective algorithms have multiple stages where a stage can only be started if
some preconditions are satisfied. A simple example is a binary tree where an
inner node can only send the message to its children after it has received it from
its parents. Checking if a message was received and conditionally starting new
transmissions requires to transfer the program control from the application to
the collective implementation. Hoefler and Lumsdaine analyzed in [5] different
schemes to progress the communication subsystem. Their study showed that,
without loosing CPU power (cores), the application needs to progress the library
by calling it regularly (e.g., with MPI Test()). This solution is of course not
feasible in the general case due to long calls to libraries that are not MPI-aware
(e.g., Level 3 BLAS).

As systems grow larger, collective operations on the whole set of processes
might not be feasible. Even though, many collective operations scale logarithmi-
cally with the number of processes for small input sizes, frequent communication
can inhibit scalability. Thus, algorithm-design needs to address this issue and
localized communications (e.g., nearest neighbor) become most important. Nev-
ertheless, most algorithms are still written in a bulk synchronous model [17] with
iterative communication and computation phases and the computation phases
of many such applications communicate within a fixed neighborhood (e.g., each
process has four neighbors in a two-dimensional five-point stencil computation).
Such neighbor exchanges can be viewed as a localized (or sparse) collective group
communication and optimized with similar principles as traditional collective op-
erations [10]. The addition of a set of calls to support such a communications is
considered for MPI-3.0. The communication topology of such sparse collective
communications is expressed by the user at runtime and their nonblocking vari-
ants suffer from similar progression issues as traditional (we call them dense)
collective operations.

1.1 Related Work

Several communication systems offer direct (offloaded) hardware support for
some MPI collective operations [1,14]. However, such implementations often fail
to support the full spectrum of collective operations and cannot express user-
defined sparse collectives.

Several works propose to offload an abstract definition of a collective opera-
tion into the communication layer (e.g., a network interface card). Portals 4 [15]
specifies triggered operations where new messages can be sent based on arriving
messages. InfiniBand ConnectX-2 [4] specifies chained Queue Pair operations
which can trigger new messages inside the HCA. GOAL allows to specify com-
munication schedules as complete dependency graphs that can be downloaded
into the communication layer [9]. All offload techniques allow nearly fully asyn-
chronous execution of nonblocking collective operations with minimal impact
on the running application. Akihiro and Ishikawa show a possible design for
kernel-level asynchronous operations in [13].



Open-MX [3] offers fast point-to-point communication for Ethernet networks.
It is similar to ESP (cf. Section 3.2) in that it uses the Linux skb mechanism to
transmit data. However, large parts of the protocol (for example reliability) are
handled in user-space. Thus, it is not possible to use it for reliable communication
from kernel-space yet.

In this work, we discuss a possible implementation of the flexible Group Op-
eration Assembly Language (GOAL) framework in a general purpose operating
system. GOAL allows to express arbitrary communication patterns and depen-
dencies. The operating system acts as the resource broker on each end-node,
it can immediately react to incoming messages (interrupts) from the hardware
and progress the collective communication and thus solve the progression issue.
In Section 2.1, we will discuss optimized design options for collective operation
schedules, kernel-level execution limitations, and an extension for performance
profiling of the kernel layer. In Section 3 we discuss our experimental design
of the kernel-level in detail. Results are presented in Section 4 followed by a
discussion of issues in our design and conclusions.

2 Expressing Collective Operations

GOAL allows to specify communication as a local dependency graph on each
process [9]. The basic set of supported vertex types are sends, receives, and local
operations. Dependencies (edges) can be added to enforce a certain execution
order (i.e., an edge A→B means that operation A needs to complete before oper-
ation B is started). The matching send/receive statements across processes form
a global communication graph that can be transformed during a compilation
phase. GOAL allows the specification and transparent optimization of complex
communication patterns.

Lower-level APIs, such as ConnectX-2 or Portals 4 would act as a concrete
machine language, something that abstract GOAL graphs could be compiled
into. However, both interfaces are only available on certain hardware platforms.
In this work, we define a scheme which enables the execution of GOAL graphs
within an operating system on standard hardware, such as Ethernet.

2.1 The GOAL interpreter

The task of the GOAL interpreter is to take an optimized representation of
the dependency graph and execute the primitive operations which are defined
by it. Each primitive operation should be executed as early as possible but
without violating the specified dependencies. GOAL graphs are serialized in
traversal order and are stored as a cache-friendly binary format called schedule.
In our implementation3, the binary schedule is stored in the format described in
Figure 1.

This representation has the advantage that the whole dependency graph is
stored in a contiguous memory block. This enables fast copying of the graph when

3 http://www.tu-chemnitz.de/informatik/RA/dw/doku.php?id=en:espgoal:study



Fig. 1. Schedule Binary Format

transferring it from userspace to kernelland. If there is a dependency between
the two operations u and v, which would be represented as edge u → v in the
dependency graph, the dependency counter (dependencies) of the operation v

will be at least one. The offset of the operation v will be listed in the adjacency
list (num dep ops, dep offseti) of u.

When the interpreter starts to execute a schedule the indep ops count op-
erations that have no incoming dependencies are executed first. Because each
operation has a different set of arguments, the type of operation is encoded in
an eight bit value at the beginning of each operation, so that the interpreter
knows how much data has to be read. The dependencies value specifies how
many incoming edges this operation has. When this counter reaches zero the
operation will be executed. The scheduler is notified by the underlying network
protocol whenever an operation is finished. When the scheduler starts an oper-
ation it’s offset in the schedule binary is passed to network protocol layer. This
address is also present in the information the scheduler gets upon completion.
The adjacency list num dep ops, dep offseti of the finished operation will be
traversed. It contains the offsets of all operations that depend on this (now fin-
ished) operation. For each operation in that list the scheduler will decrease the
dependencies counter by one. If such a counter reaches zero, the corresponding
operation is executed.

GOAL supports three types of primitive operations: send, receive and local
operations. Each of those operations either operates on a single contiguous block
of data or on scatter/gather lists. Send and receive operations are non-blocking.
An operation completes if all specified buffers can be read and modified. That
implies that a send operation can be finished as soon as the data has been copied
into a temporary buffer in the case of eager send. The schedule execution is non-
blocking, thus, all send and receive operations are implicitly nonblocking. Local
operations are predefined arithmetic (add, sub, mult, div, max, min) and binary
operations (and, or, xor) on all signed, unsigned and floating point datatypes
from one to 64 bit width, a copy operation to copy data between local buffers, as
well as a timing operation which records a timestamp at the time it is executed
by the GOAL scheduler.



2.2 User vs. Kernel Level Design

The GOAL API allows the user to specify arbitrary dependency graphs. Each
node in such a graph represents a single send, receive or local calculation op-
eration. Therefore nodes can be created by the user by calling, for example,
GOAL Send() or GOAL Recv(). For each input or output buffer that is given
to these functions, there is a corresponding argument which can be either
GOAL USERSPACE or GOAL SCRATCHPAD. The reason for this is that
schedules can be defined in a different place than they are executed. If one
would write a function that creates a tree based gather schedule with GOAL,
this function would have to allocate a temporary buffer. But this function can
not contain the corresponding call to free(), unless the schedule is also executed,
waited on, and destroyed in that function — which would make it impossible to
overlap the communication with computation. Therefore GOAL has a primitive
memory management functionality. For each schedule, the user specifies how
much temporary space is needed. GOAL will allocate such a scratchpad buffer

before it starts to execute the schedule. If the user wants to reference data in the
scratchpad buffer, he can do this by passing the byte offset (relative to the start of
the scratchpad) and set the memory type argument to GOAL SCRATCHPAD.

Edges t → h in the dependency graph can be created with the function
GOAL Requires(). After the graph is complete it can be compiled into the binary
representation using GOAL Compile() and run with GOAL Run. The functions
GOAL Test() and GOAL Wait() can be used to test and wait for completion of
the handle returned by GOAL Run. The GOAL API is implemented as a userspace
library, while the actual interpreter is a kernel module. The GOAL Run() func-
tion will hand over the binary schedule to the kernel module by doing an ioctl().
The complete control flow is depicted in Figure 2.

Fig. 2. ESPGOAL Control Flow

In our particular example implementation, we use the kernel-based Ethernet
Streaming Protocol (ESP) [8], but we remark that any kernel-level communi-
cation mechanism will suffice. The ESP network protocol uses MAC addresses
and device ids to identify peers. We collect this information during the definition



phase of the schedule: If the user adds a send operation to rank 7 to a depen-
dency graph on rank 8 we use MPI Isend/Irecv to exchange the MAC addresses
between both peers. To keep the amount of out of band communication low, we
cache that information in userspace. During GOAL Run we pass the schedule as
well as the list of all MAC addresses and device ids of the peers we will com-
municate with in that schedule to the GOAL interpreter. The interpreter will
update the peer list for the active communicator by opening new connections (if
they don’t exist yet) before the schedule is started. Upon completion, the GOAL
interpreter will change a memory location in the process address space, so the
GOAL Wait()/-Test() functions can poll that value to gather information about
the status of a schedule in progress.

3 Integration into the Operating System

3.1 Anatomy of the Linux Kernel Network Stack

The Linux kernel network stack consists of multiple layers, each tries to provide
a different level of abstraction. The Linux network stack is shown in Figure 3(a).

(a) Linux Kernel Network Stack (b) GOAL Network Stack

Fig. 3. Comparison of the default Linux with the GOAL network stack

A network interface card typically has a hardware buffer to temporarily store
incoming network packets. When a new packet arrives the Linux kernel is notified
with an interrupt from the network card. The device driver retrieves the newly
received packets and stores them in so called socket buffers (skbs).

Incoming packets (skbs) are handled by “receive hook” functions, registered
with dev_add_pack() in Linux. Full skbs (including all Ethernet packet data,
such as destination, ethertype, etc.) are sent with dev_queue_xmit(). This is
the lowest layer of abstraction which is offered by the Linux kernel to send
and receive data in a device independent manner. Our implementation uses this



interface to the driver layer inside the kernel. The benefit of this approach is that
the functions mentioned above do not sleep and therefore they can be called in
an irqhandler or tasklet.

Another possibility how to implement network communication in the Linux
kernel is to use the kernel socket API. Utilizing kernel sockets is very similar
to userspace socket programming, however, in the kernel one has to employ
mutual exclusion strategies to prevent race conditions. Most network protocols
supported by the Linux kernel, such as TCP are implemented with the kernel
socket API. One disadvantage of the socket API is that certain functions, for
example, sending data via kernel_sendmsg() can not be performed in an inter-
rupt handler or tasklet. If such functionality is required it has to be implemented
in a separate kernel thread or a workqueue element. Thus, we used workqueues
to implement GOAL over ESP (ESPGOAL). Other network protocols such as
TCP do not have to use workqueues or an extra kernel thread as the problematic
socket API function which might sleep are usually called from userspace.

This raises the question if the scheduling overhead implied by using
workqueues has a negative impact on ESPGOALs performance, compared to
the other possible approaches to send and receive data in the kernel. If the
overhead required to start a new work item in a workqueue is significant it is
desirable to have an upper bound on its performance impact so that we can
decide if it would be useful to exchange the ESP protocol with something that
directly utilizes the functions offered by the device driver to send and receive
data in future work.
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Fig. 4. Microbenchmark Results

We implemented a microbenchmark to assess the overheads affiliated with
the different choices. Our benchmark consists of three different implementations
of a pingpong scheme, one using the raw socket API from userspace and the
other two run in kernelspace. The benchmark performs multiple round-trips for
each measurement to amortize the startup overheads. Figure 4(a) shows the
benchmark results for two CHiC nodes, see Section 4.1. We observe that the



overhead for inserting and scheduling a workqueue element adds about 1.6 µs of
latency to each transmission.

3.2 The Ethernet Streaming Protocol

The Ethernet Streaming Protocol (ESP) [8] is a connection-oriented, port mul-
tiplexed and reliable protocol on top of Ethernet with optimized congestion
control for static, switched networks. It can be used through standard sockets
from kernel- and userspace. This makes it ideal to utilize it in a kernel based ver-
sion of the GOAL interpreter. As mentioned before, Open-MX cannot be used
from inside the kernel directly at this stage.

The ESP protocol is transfer based. There are special flags to signal the
start (TXS) and finish (TXF) of a transfer. After the initial TXS, the receiver
requests more data, until he receives a TXF packet. This has the advantage that
the receiver handles flow control and adapts it to the number of streams. The
GOAL scheduler is only invoked for packets with the TXF flag set.

3.3 Asynchronous Progression

The GOAL interpreter is activated (run as a kernel workqueue element) in two
conditions: Either ESP received a packet that had the TXF flag set or ESP could
not receive more data into an skb because there is not enough memory available
(memory pressure). The TXF flag indicates that a transfer is completed and the
GOAL scheduler will try to match the received message against the preposted
receive queue or put the message in the unexpected receive queue. If the message
matched, the scheduler will mark the corresponding node in the schedule as
completed and decrease the dependency counters of all nodes (operations) that
depend on it. The scheduler will then immediately start all operations where the
dependency counter reached zero.

If the scheduler was called because of memory pressure, it will also try to
process messages that are not completely transferred yet. The header that is
needed to perform message matching is transferred in the first 28 bytes of each
transfer so the interpreter can perform message matching and partially copy the
payload to the final destination for every socket that contains at least 28 bytes
of data and holds a message that belongs to a preposted receive.

A workqueue item is implemented as a function pointer that will be executed
in a special kernel thread. A modern Linux kernel (i.e., 2.6.36) will run one
workqueue execution thread per core and decide which workqueue item to run
based on a number of flags that can be set when allocating the workqueue
structure. Currently the GOAL interpreter is run as a high-priority workload,
which means that available workqueue items are to be scheduled by the kernel
as soon as possible. Also our workqueue items are marked as unbound, which
means they can be run on any core available, to maximize the chance that they
are executed immediately.



3.4 Performing Reduction Operations in Kernel Space

Performing floating point operations inside the kernel space is supported by the
macros kernel fpu begin()/end(), which save and recover the FPU state and
disables preemption.

In order to assess the performance impact of a kernel-based reduction, we
implemented a simple benchmark that computes the maxima of two 32 bit float-
ing point vectors. We ran the benchmark in userspace and in the kernel with
a GOAL local operation. We excluded the schedule startup overhead from all
GOAL measurements. As shown in Figure 4(b) the kernel implementation is
slightly slower than the userspace implementation for small datasizes, but out-
performs the userspace implementation for larger vectors.

4 Benchmark Results

We implemented several collective operations with GOAL on top of ESP. It was
shown that test-based schemes achieve reasonable overlap for large messages
[7]. However, overlapping small-message communications remains hard due to
the high ratio between control overhead and message-sending. Thus, we focus
especially on small-message operations because they are most important at large-
scale and are hardest to overlap. We implemented several optimized collective
algorithms for small-message collectives. For all-to-all communication, we used
the scheme proposed by Bruck [2] and for barrier and allreduce we implemented
the well-known dissemination algorithm. Both schemes use log2(P ) stages in P

processes and have a relatively complex dependency structure.

4.1 Experimental Setting

We conducted all experiments on the CHiC Cluster System at the University of
Technology Chemnitz. CHiC consists of 530 compute nodes with two Opteron
2218 Dual-Core 2.6 GHz CPUs running Linux. Each node is equipped with two
Tigon3 BCM95704A6 rev 2100 network cards which are connected to an 48 port
Gigabit Ethernet Switch (SMC 8848M). We used an MTU of 1500. The NIC used
supports interrupt coalescing.With the default coalescing parameters the latency
was very high. If we disabled interrupt coalescing completely our systems became
unstable. Therefore we optimized the interrupt coalescing settings with a genetic
algorithm and the omx-pingpong tool included in the Open-MX distribution.
The coalescing settings used were:

rx-usecs rx-frames rx-usecs-irq rx-frames-irq tx-usecs tx-frames tx-usecs-irq tx-frames-irq

1 1 996 95 32 94 724 128

We used Open MPI 1.4.2 and Open-MX 1.3.4 in all experiments. We compare
LibNBC over MPI with the different transports: TCP/IP (TCP), Open-MX
(OMX), and ESP (used from user-level) with out kernel-based ESPGOAL imple-
mentation. The latency of a blocking execution (initiation call immediately fol-
lowed by a wait) of the GOAL nonblocking collective operations and the LibNBC
nonblocking collective operations is very similar. Figure 5 shows barrier as an
example. It can be seen that the latency of the ESPGOAL Barrier is between the



Open MPI implementation with the TCP and MX BTL. This can be attributed
to the well tuned Open-MX implementation, which uses a lot of optimizations
that have not been done in ESP. Also note that minimizing latency for blocking
collectives was not the goal for this work — we just want to ensure that our
implementation is not substantially slower, which could invalidate our overlap
results shown in Section 4.2. If an implementation spends a lot of time waiting
for IO it would be easy to overlap the collective and the CPU overhead would
be low.

4.2 Asynchronous Progress and Overlap
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We now analyze the ability of ESPGOAL
to asynchronously progress messages. For
this, we use NBCBench [7] without any
explicit progression. NBCBench uses a
work-loop, which is calibrated at the be-
ginning of the benchmark, to determine
the overlap. This means that all interrup-
tions by the kernel will “steal” time from
the work loop and show up as overhead,
see [5] for a detailed description.

NBCBench reports the share of the
communication that can be overlapped
with computation, a number between 0
and 1 (higher is better). Figure 4.2 shows
the results for all-to-all of size 8 bytes per process and barrier. As expected,
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we see high overlap with the ESPGOAL implementation while the unprogressed
nonblocking collective operations exhibit very low overlap due to missing asyn-
chronous progression (all but the first stage of the algorithm will be performed
during the wait call).



4.3 CPU Overheads

In this section, we assess the absolute CPU overheads, i.e., the absolute non-
overlappable time of the communication. We showed that asynchronous pro-
gression works well for the investigated operation. Reducing the absolute CPU
overhead of the operations is most important to “free” the CPU for the user
application. Figure 4.3 shows the absolute CPU overhead for each configura-
tion. ESPGOAL causes a significantly lower CPU overhead than LibNBC in all
configurations.
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5 Conclusions and Future Work

We implemented a dependency driven communication framework that offers true
asynchronous progress without an extra progression thread. We defined an API
to use such a framework that supports simple sends and receives, vector sends
and receives, and local operations. Our framework shows significant improve-
ments in terms of host overhead over existing userland implementations of non-
blocking collectives. Our work shows that it is possible to implement dependency
driven communication schemes as a Linux kernel module without placing con-
straints on the user. For example our GOAL scheduler does not require the user
to pin the memory used for communication buffers.

In future work this implementation should be tuned further so that it can
compete with state of the art low overhead Ethernet protocols such as Open-MX.
One possible way to tune ESPGOAL even further would be to replace the ESP
protocol with another low overhead Ethernet protocol that shows better perfor-
mance in point to point latency benchmarks, for example it could be investigated
if ESP can be replaced with the kernel part of Open-MX.

Another interesting optimization would be the use of the memory subsystem
on multi-core nodes. An optimized GOAL implementation could directly push
or pull the data into other processes memory similarly to kernel-level zero copy
mechanisms such as KNEM [11].
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16. Sanders, P., Speck, J., Träff, J.L.: Two-tree algorithms for full bandwidth broad-
cast, reduction and scan. Parallel Comput. 35, 581–594 (December 2009)

17. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),
103–111 (1990)


